Reference adjusted and standardized all-cause and crude probabilities as an alternative to net survival in population-based cancer studies

Paul C Lambert ${ }^{1,2}$, Therese M-L Andersson ${ }^{2}$, Mark J Rutherford ${ }^{1,3}$, Tor Åge Myklebust ${ }^{4,5}$, Bjørn Møller ${ }^{4}$

${ }^{1}$ Biostatistics Research Group, Department of Health Sciences, University of Leicester, UK
${ }^{2}$ Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
${ }^{3}$ International Agency for Research on Cancer, Lyon, France
${ }^{4}$ Department of Registration, Cancer Registry of Norway, Oslo, Norway.
${ }^{5}$ Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway

Biometric Society
Online 22 September 2020

University of

Leicester

Karolinska Institutet

Population-based cancer survival

- Cancer registries attempt to capture all diagnosed cases of cancers.
- Our work is mainly in survival of those diagnosed with cancer.
- Comparisions

Population-based cancer survival

- Cancer registries attempt to capture all diagnosed cases of cancers.
- Our work is mainly in survival of those diagnosed with cancer.
- Comparisions
- Countries, regions, socio-economic groups, calendar time.
- Collection of more linked data leads to more complex causal research.
- Naive comparison of all-cause survival problematic because differences could be due to..
(1) differences in cancer mortality rates.
(2) differences in other cause mortality rates.
(3) differences in the age distribution (and other demographic factors).

Population-based cancer survival

- Cancer registries attempt to capture all diagnosed cases of cancers.
- Our work is mainly in survival of those diagnosed with cancer.
- Comparisions
- Countries, regions, socio-economic groups, calendar time.
- Collection of more linked data leads to more complex causal research.
- Naive comparison of all-cause survival problematic because differences could be due to..
(1) differences in cancer mortality rates.
(2) differences in other cause mortality rates.
(3) differences in the age distribution (and other demographic factors).
- We try to 'isolate' the mortality associated with the cancer and (age) standardize to ensure comparisons are 'fair'.

Competing causes

- Individuals diagnosed with a specific cancer are at risk for
- dying from their cancer.
- dying from other causes.

Competing causes

- Individuals diagnosed with a specific cancer are at risk for
- dying from their cancer.
- dying from other causes.

$$
h\left(t \mid Z_{i}\right)=h_{o}\left(t \mid Z_{i}\right)+h_{c}\left(t \mid Z_{i}\right)
$$

Competing causes

- Individuals diagnosed with a specific cancer are at risk for
- dying from their cancer.
- dying from other causes.

$$
h\left(t \mid Z_{i}\right)=h_{o}\left(t \mid Z_{i}\right)+h_{c}\left(t \mid Z_{i}\right)
$$

- If we had reliable, accurate cause of death information we can estimate $h_{c}\left(t \mid Z_{i}\right)$. This is just a cause-specific analysis.

Competing causes

- Individuals diagnosed with a specific cancer are at risk for
- dying from their cancer.
- dying from other causes.

$$
h\left(t \mid Z_{i}\right)=h_{o}\left(t \mid Z_{i}\right)+h_{c}\left(t \mid Z_{i}\right)
$$

- If we had reliable, accurate cause of death information we can estimate $h_{c}\left(t \mid Z_{i}\right)$. This is just a cause-specific analysis.
- However, lots of evidence that death certificates not well completed. Accuracy varies ...
- over time
- between countries
- between cancers
- by age (particularly poor in the elderly)

Competing causes

- Individuals diagnosed with a specific cancer are at risk for
- dying from their cancer.
- dying from other causes.

$$
h\left(t \mid Z_{i}\right)=h_{o}\left(t \mid Z_{i}\right)+h_{c}\left(t \mid Z_{i}\right)
$$

- If we had reliable, accurate cause of death information we can estimate $h_{c}\left(t \mid Z_{i}\right)$. This is just a cause-specific analysis.
- However, lots of evidence that death certificates not well completed. Accuracy varies ...
- over time
- between countries
- between cancers
- by age (particularly poor in the elderly)

So we estimate $h_{c}\left(t \mid Z_{i}\right)$ without using cause of death information.

Excess mortality/Relative survival

Incorporate expected mortality rates

All-cause mortality $=$ expected mortality + excess mortality

Excess mortality/Relative survival

Incorporate expected mortality rates

All-cause mortality $=$ expected mortality + excess mortality $h\left(t \mid Z_{i}\right) \quad=\quad h^{*}\left(t \mid Z_{i}\right) \quad+\quad \lambda\left(t \mid Z_{i}\right)$

Excess mortality/Relative survival

Incorporate expected mortality rates

All-cause mortality $=$ expected mortality + excess mortality

$$
h\left(t \mid Z_{i}\right) \quad=\quad h^{*}\left(t \mid Z_{i}\right) \quad+\quad \lambda\left(t \mid Z_{i}\right)
$$

- Need expected rates stratified by levels of Z, e.g. (age, sex, calendar year, region, deprivation group, ...).
- In a perfect world $h_{c}\left(t \mid Z_{i}\right)=\lambda\left(t \mid Z_{i}\right)$.

Excess mortality/Relative survival

Incorporate expected mortality rates

All-cause mortality $=$ expected mortality + excess mortality

$$
h\left(t \mid Z_{i}\right) \quad=\quad h^{*}\left(t \mid Z_{i}\right) \quad+\quad \lambda\left(t \mid Z_{i}\right)
$$

- Need expected rates stratified by levels of Z, e.g. (age, sex, calendar year, region, deprivation group, ...).
- In a perfect world $h_{c}\left(t \mid Z_{i}\right)=\lambda\left(t \mid Z_{i}\right)$.
- The world is not perfect....

Excess mortality/Relative survival

Incorporate expected mortality rates

All-cause mortality $=$ expected mortality + excess mortality

$$
h\left(t \mid Z_{i}\right) \quad=\quad h^{*}\left(t \mid Z_{i}\right) \quad+\quad \lambda\left(t \mid Z_{i}\right)
$$

- Need expected rates stratified by levels of Z, e.g. (age, sex, calendar year, region, deprivation group, ...).
- In a perfect world $h_{c}\left(t \mid Z_{i}\right)=\lambda\left(t \mid Z_{i}\right)$.
- The world is not perfect....

Transform to survival

$$
S\left(t \mid Z_{i}\right)=S^{*}\left(t \mid Z_{i}\right) R\left(t \mid Z_{i}\right)
$$

Excess mortality/Relative survival

Incorporate expected mortality rates

All-cause mortality $=$ expected mortality + excess mortality

$$
h\left(t \mid Z_{i}\right) \quad=\quad h^{*}\left(t \mid Z_{i}\right) \quad+\quad \lambda\left(t \mid Z_{i}\right)
$$

- Need expected rates stratified by levels of Z, e.g. (age, sex, calendar year, region, deprivation group, ...).
- In a perfect world $h_{c}\left(t \mid Z_{i}\right)=\lambda\left(t \mid Z_{i}\right)$.
- The world is not perfect....

Transform to survival

$$
\begin{gathered}
S\left(t \mid Z_{i}\right)=S^{*}\left(t \mid Z_{i}\right) R\left(t \mid Z_{i}\right) \\
R\left(t \mid Z_{i}\right)=\frac{S\left(t \mid Z_{i}\right)}{S^{*}\left(t \mid Z_{i}\right)} \quad \text { hence 'relative survival' }
\end{gathered}
$$

Marginal estimates

All-cause $=$ Expected \times Relative

Marginal estimates

$$
\begin{aligned}
\text { All-cause } & =\text { Expected } \times \text { Relative } \\
S\left(t \mid Z_{i}\right) & =S^{*}\left(t \mid Z_{i}\right) \times R\left(t \mid Z_{i}\right)
\end{aligned}
$$

Marginal estimates

$$
\begin{aligned}
\text { All-cause } & =\text { Expected } \times \text { Relative } \\
S\left(t \mid Z_{i}\right) & =S^{*}\left(t \mid Z_{i}\right) \times R\left(t \mid Z_{i}\right)
\end{aligned}
$$

- Estimand of interest is marginal relative survival.

$$
R_{m}(t \mid Z)=E_{Z}[R(t \mid Z)]
$$

- Expectation is over distribution of Z.
- Estimated in a model setting by,

$$
\bar{R}_{m}(t \mid Z)=\frac{1}{N} \sum_{i=1}^{N} \widehat{R}\left(t \mid Z_{i}\right)
$$

- Predict a survival curve for each of the N individuals and then average (see Syriopoulou et al. 2020 [1]).

Interpretation of relative/net survival

- We usually present age-standardized marginal relative survival.
- Interpretation as marginal net survival (under assumptions).

Survival in the hypothetical situation where

Interpretation of relative/net survival

- We usually present age-standardized marginal relative survival.
- Interpretation as marginal net survival (under assumptions).

Survival in the hypothetical situation where
(1) it is not possible to die from causes other than the cancer.

Interpretation of relative/net survival

- We usually present age-standardized marginal relative survival.
- Interpretation as marginal net survival (under assumptions).

Survival in the hypothetical situation where
(1) it is not possible to die from causes other than the cancer.
(2) the age distribution was not as it is observed, but as that in a reference population.

Interpretation of relative/net survival

- We usually present age-standardized marginal relative survival.
- Interpretation as marginal net survival (under assumptions).

Survival in the hypothetical situation where
(1) it is not possible to die from causes other than the cancer.
(2) the age distribution was not as it is observed, but as that in a reference population.

- Many examples of the media, politicians, clinicians, patients and scientists interpreting incorrectly.
- See Lambert et al 2015 [2], Pavlic and Pohar Perme 2018 [3].

Fair Comparisons?

- When comparing population subgroups we are interested in whether there are differences in cancer (excess) mortality rates.

For Fair Comparisons differences between population groups should not depend on,

Fair Comparisons?

- When comparing population subgroups we are interested in whether there are differences in cancer (excess) mortality rates.

For Fair Comparisons differences between population groups should not depend on,
(1) Differences in the age distribution (or other demographic covariates),

Fair Comparisons?

- When comparing population subgroups we are interested in whether there are differences in cancer (excess) mortality rates.

For Fair Comparisons differences between population groups should not depend on,
(1) Differences in the age distribution (or other demographic covariates),
(2) Differences in other cause mortality rates.

Fair Comparisons?

- When comparing population subgroups we are interested in whether there are differences in cancer (excess) mortality rates.

For Fair Comparisons differences between population groups should not depend on,
(1) Differences in the age distribution (or other demographic covariates),
(2) Differences in other cause mortality rates.

- This is the reason we estimate net survival

Comparability

- When comparing two population groups the distribution of covariates Z will be different.
- Compare $\bar{R}_{m}\left(t \mid X=1, Z^{1}\right)$ and $\bar{R}_{m}\left(t \mid X=0, Z^{0}\right)$

Comparability

- When comparing two population groups the distribution of covariates Z will be different.
- Compare $\bar{R}_{m}\left(t \mid X=1, Z^{1}\right)$ and $\bar{R}_{m}\left(t \mid X=0, Z^{0}\right)$
- We need to marginalize over the same covariate distribution.

Comparability

- When comparing two population groups the distribution of covariates Z will be different.
- Compare $\bar{R}_{m}\left(t \mid X=1, Z^{1}\right)$ and $\bar{R}_{m}\left(t \mid X=0, Z^{0}\right)$
- We need to marginalize over the same covariate distribution.

Options

(1) Use combined distribution of $X=1$ and $X=0$.
(2) Use covariate distribution when $X=1$
(3) Use covariate distribution when $X=0$
(4) Use external covariate distribution.

- (4) is the most common (for age), but I will come back to alternatives.

External weights

- Define a reference population with covariate distribution $Z^{R E F}$
- We weight individuals relative to this reference population.
- If we do this in both groups (studies) then differences will not be due to differential Z

$$
\bar{R}_{m}\left(t \mid Z^{R E F}\right)=\frac{1}{N} \sum_{i=1}^{N} w_{i} \widehat{R}\left(t \mid Z_{i}\right)
$$

External weights

- Define a reference population with covariate distribution $Z^{R E F}$
- We weight individuals relative to this reference population.
- If we do this in both groups (studies) then differences will not be due to differential Z

$$
\bar{R}_{m}\left(t \mid Z^{R E F}\right)=\frac{1}{N} \sum_{i=1}^{N} w_{i} \widehat{R}\left(t \mid Z_{i}\right)
$$

- A common example of this is age-standardization.

Age Standardization

- Below of are the International Cancer Survival Standard (ICSS) age groups[4].

Age Standardization

- Below of are the International Cancer Survival Standard (ICSS) age groups[4].

Age	ICSS 1 a	ICSS 2 b	ICSS 3 c
$15-44$ years	0.07	0.28	0.60
45-54 years	0.12	0.17	0.10
55-64 years	0.23	0.21	0.10
65-74 years	0.29	0.20	0.10
$75+$ years	0.29	0.14	0.10

${ }^{\text {a }}$ Lip, tongue, salivary glands, oral cavity, oropharynx, hypopharynx, head and neck, oesophagus, stomach, small intestine, colon, rectum, liver, biliary tract, pancreas, nasal cavities, larynx, lung, pleura, breast, corpus uteri, ovary, vagina and vulva, penis, bladder, kidney, choroid melanoma, non-Hodgkin lymphoma, multiple myeloma, chronic lymphatic leukaemia, acute myeloid leukaemia, chronic myeloid leukaemia, leukaemia, prostate
${ }^{b}$ Nasopharynx, soft tissues, melanoma, cervix uteri, brain, thyroid gland, bone
c Testis, Hodgkin lymphoma, acute lymphatic leukaemia

Obtaining weights

w_{i}^{s} proportion in age group in reference population to which the $i^{\text {th }}$ individual belongs.
w_{i}^{a} proportion in the age group in the study population to which the $i^{\text {th }}$ individual belongs.

$$
w_{i}=\frac{w_{i}^{s}}{w_{i}^{a}}
$$

Obtaining weights

w_{i}^{s} proportion in age group in reference population to which the $i^{t h}$ individual belongs.
w_{i}^{a} proportion in the age group in the study population to which the $i^{\text {th }}$ individual belongs.

$$
w_{i}=\frac{w_{i}^{s}}{w_{i}^{a}}
$$

Example

- Men diagnosed in England with Melanoma.
- Compare 5 deprivation groups derived using national quintiles of the income domain of the area of patients' residence at diagnosis.
- Simplify here to comparison of most deprived vs least deprived.

Example

- Men diagnosed in England with Melanoma.
- Compare 5 deprivation groups derived using national quintiles of the income domain of the area of patients' residence at diagnosis.
- Simplify here to comparison of most deprived vs least deprived.

Model

- Flexible parametric relative survival model [5].
- Restricted cubic splines (rcs) with 6 knots for baseline.
- Age modelled continuously using rcs (4 knots).
- Deprivation binary covariate.
- interactions between age and deprivation.
- Effects of age and deprivation time-dependent (4 knots per covariate).

Marginal Net Probability of Survival

Marginal Net Probability of Death

Marginal Net Probability of Death

Age Standardization: Internal (within each group) Fair Comparison: X

Marginal Net Probability of Death

Age Standardization: ICSS Fair Comparison:

Comparing Probabilities of death

(1) Net probability of death (1-net survival)

Probability of death in hypothetical world where not possible to die from causes other than the cancer under study.

Comparing Probabilities of death

(1) Net probability of death (1-net survival)

Probability of death in hypothetical world where not possible to die from causes other than the cancer under study.

(2) All-cause probability of death

Probability of death from any cause (cancer and other causes) in real world.

Comparing Probabilities of death

(1) Net probability of death (1-net survival)

Probability of death in hypothetical world where not possible to die from causes other than the cancer under study.
(2) All-cause probability of death

Probability of death from any cause (cancer and other causes) in real world.
(3) Crude Probability of death due to cancer

Probability of death from cancer in real world.

Comparing Probabilities of death

(1) Net probability of death (1-net survival)

Probability of death in hypothetical world where not possible to die from causes other than the cancer under study.
(2) All-cause probability of death

Probability of death from any cause (cancer and other causes) in real world.
(3) Crude Probability of death due to cancer

Probability of death from cancer in real world.
Age standardization for (1), (2) \& (3) removes age differences.

Comparing Probabilities of death

(1) Net probability of death (1-net survival)

Probability of death in hypothetical world where not possible to die from causes other than the cancer under study.
(2) All-cause probability of death

Probability of death from any cause (cancer and other causes) in real world.
(3) Crude Probability of death due to cancer

Probability of death from cancer in real world.
Age standardization for (1), (2) \& (3) removes age differences.
However, (2) and (3) depend on other cause mortality.

Crude Probabilities

- Same as a cumulative incidence function in competing risks.
- Partition all-cause probability of death into death to to cancer and death due to other causes
All-cause probability of death

$$
F\left(t \mid Z_{i}\right)=1-S\left(t \mid Z_{i}\right)
$$

All-cause $=$ prob cancer + prob other cause prob of death death death

Crude Probabilities

- Same as a cumulative incidence function in competing risks.
- Partition all-cause probability of death into death to to cancer and death due to other causes

All-cause probability of death

$$
F\left(t \mid Z_{i}\right)=1-S\left(t \mid Z_{i}\right)
$$

All-cause $=$ prob cancer + prob other cause prob of death death death

$$
F\left(t \mid Z_{i}\right)=F_{c}\left(t \mid Z_{i}\right)+\quad F_{o}\left(t \mid Z_{i}\right)
$$

Crude Probabilities

- Same as a cumulative incidence function in competing risks.
- Partition all-cause probability of death into death to to cancer and death due to other causes

All-cause probability of death

$$
F\left(t \mid Z_{i}\right)=1-S\left(t \mid Z_{i}\right)
$$

All-cause $=$ prob cancer + prob other cause prob of death death death

$$
F\left(t \mid Z_{i}\right)=F_{c}\left(t \mid Z_{i}\right) \quad+\quad F_{o}\left(t \mid Z_{i}\right)
$$

Crude Probability of Death[]

$$
F_{c}(t \mid Z)=\int_{0}^{t} S^{*}\left(u \mid Z_{i}\right) \widehat{R}\left(u \mid Z_{i}\right) \widehat{\lambda}\left(u \mid Z_{i}\right) d u
$$

Making all-cause and crude survival comparable

- All-cause and crude probabilities are easier to interpret, but are not comparable between populations.
- Can we make them comparable?

Making all-cause and crude survival comparable

- All-cause and crude probabilities are easier to interpret, but are not comparable between populations.
- Can we make them comparable?

Making all-cause and crude survival comparable

- All-cause and crude probabilities are easier to interpret, but are not comparable between populations.
- Can we make them comparable?

Making all-cause and crude survival comparable

- All-cause and crude probabilities are easier to interpret, but are not comparable between populations.
- Can we make them comparable?

Making all-cause and crude survival comparable

- All-cause and crude probabilities are easier to interpret, but are not comparable between populations.
- Can we make them comparable?

Making all-cause and crude survival comparable

- All-cause and crude probabilities are easier to interpret, but are not comparable between populations.
- Can we make them comparable?

Making all-cause and crude survival comparable

- All-cause and crude probabilities are easier to interpret, but are not comparable between populations.
- Can we make them comparable?

Reference expected mortality rates

- The reference is the mortality rate for males in England in 2016.

Reference expected mortality rates

- The reference is the mortality rate for males in England in 2016.

All-cause probability of death

Reference Population

$S^{* *}\left(t \mid Z_{i}\right)$ - expected survival in the reference population. $h^{* *}\left(t \mid Z_{i}\right)$ - expected mortality rate in the reference population.

All-cause probability of death

Reference Population

$S^{* *}\left(t \mid Z_{i}\right)$ - expected survival in the reference population.
$h^{* *}\left(t \mid Z_{i}\right)$ - expected mortality rate in the reference population.
Marginal all-cause survival (study population)

$$
\bar{S}_{m}(t \mid Z, X=x)=\frac{1}{N} \sum_{i=1}^{N} S^{*}\left(t \mid Z_{i}, X=x\right) \widehat{R}\left(t \mid Z_{i}, X=x\right)
$$

All-cause probability of death

Reference Population

$S^{* *}\left(t \mid Z_{i}\right)$ - expected survival in the reference population.
$h^{* *}\left(t \mid Z_{i}\right) \quad$ - expected mortality rate in the reference population.
Marginal all-cause survival (study population)

$$
\bar{S}_{m}(t \mid Z, X=x)=\frac{1}{N} \sum_{i=1}^{N} S^{*}\left(t \mid Z_{i}, X=x\right) \widehat{R}\left(t \mid Z_{i}, X=x\right)
$$

Using reference expected rates.

$$
\overline{S_{m}^{R}}(t \mid Z, X=x)=\frac{1}{N} \sum_{i=1}^{N} w_{i} S^{* *}\left(t \mid Z_{i}, X=x\right) \widehat{R}\left(t \mid Z_{i}, X=x\right)
$$

All-cause probability of death

Reference Population

$S^{* *}\left(t \mid Z_{i}\right)$ - expected survival in the reference population.
$h^{* *}\left(t \mid Z_{i}\right) \quad$ - expected mortality rate in the reference population.
Marginal all-cause survival (study population)

$$
\bar{S}_{m}(t \mid Z, X=x)=\frac{1}{N} \sum_{i=1}^{N} S^{*}\left(t \mid Z_{i}, X=x\right) \widehat{R}\left(t \mid Z_{i}, X=x\right)
$$

Using reference expected rates.

$$
\overline{S_{m}^{R}}(t \mid Z, X=x)=\frac{1}{N} \sum_{i=1}^{N} w_{i} S^{* *}\left(t \mid Z_{i}, X=x\right) \widehat{R}\left(t \mid Z_{i}, X=x\right)
$$

Crude Probabilities of death due to cancer

- Crude probability of death due to cancer (study population).

$$
\bar{F}_{c}(t \mid Z)=\frac{1}{N} \sum_{i=1}^{N} w_{i} \int_{0}^{t} S^{*}\left(u \mid Z_{i}\right) \widehat{R}\left(u \mid Z_{i}\right) \widehat{\lambda}\left(u \mid Z_{i}\right) d u
$$

- Crude probability of death due to cancer (using reference population).

$$
\bar{F}_{c}^{R}(t \mid Z)=\frac{1}{N} \sum_{i=1}^{N} w_{i} \int_{0}^{t} S^{* *}\left(u \mid Z_{i}\right) \widehat{R}\left(u \mid Z_{i}\right) \widehat{\lambda}\left(u \mid Z_{i}\right) d u
$$

Crude Probabilities of death due to cancer

- Crude probability of death due to cancer (study population).

$$
\bar{F}_{c}(t \mid Z)=\frac{1}{N} \sum_{i=1}^{N} w_{i} \int_{0}^{t} S^{*}\left(u \mid Z_{i}\right) \widehat{R}\left(u \mid Z_{i}\right) \widehat{\lambda}\left(u \mid Z_{i}\right) d u
$$

- Crude probability of death due to cancer (using reference population).

$$
\bar{F}_{c}^{R}(t \mid Z)=\frac{1}{N} \sum_{i=1}^{N} w_{i} \int_{0}^{t} S^{* *}\left(u \mid Z_{i}\right) \widehat{R}\left(u \mid Z_{i}\right) \widehat{\lambda}\left(u \mid Z_{i}\right) d u
$$

Note if $S^{* *}\left(t \mid Z_{i}\right)=1$ for all Z_{i}, this reduces to $1-\bar{R}_{m}(t \mid Z)$.

Net Probability of Survival

Net Probability of Death

Net Probability of Death

Age Standardization: Internal (within each group) Fair Comparison: X

Net Probability of Death

Age Standardization: ICSS Fair Comparison:

All-cause Probability of Death

Age Standardization: Internal (within each group)
Expected Rates: Separate
Fair Comparison: X

All-cause Probability of Death

Age Standardization: ICSS
Expected Rates: Separate Fair Comparison: X

All-cause Probability of Death

Age Standardization: ICSS
Expected Rates: Reference Fair Comparison:

Crude Probability of Death

Age Standardization: Internal (within each group)
Expected Rates: Separate
Fair Comparison: X

Crude Probability of Death

Age Standardization: ICSS
Expected Rates: Separate
Fair Comparison: X

Crude Probability of Death

Age Standardization: ICSS
Expected Rates: Reference
Fair Comparison:

Choice of Hypotheticals

Net Probability of Death

(1) Age distribution is that of reference.
(2) Mortality rate due to other causes is zero

All-cause/Crude Probability of Death

(1) Age distribution is that of reference.
(2) Mortality rate due to other causes is that of reference.

- In some situations it is useful to select one group to be non-hypothetical.
- Standardize to age distribution of selected group.
- Use expected mortality rates of selected group.

Crude Probability of Death

Age Standardization: Internal (within each group)
Expected Rates: Separate
Fair Comparison: X

Crude Probability of Death

Age Standardization: Most Deprived
Expected Rates: Most Deprived Fair Comparison:

Contrasts

Age Standardization: Internal (within each group)
Expected Rates: Separate
Fair Comparison: X

Contrasts

Age Standardization: ICSS
Expected Rates: English combined Fair Comparison:

Contrasts

Age Standardization: Most Deprived
Expected Rates: Most Deprived Fair Comparison:

We have a choice when making comparisons

- We want to compare probabilities of survival/death
- Need to 'remove' differences due to other causes.
- We can do this by
(1) Assume rate of death due to other causes is the same in both groups and is equal to zero for all ages (net probability).
(2) Assume rate of death due to other causes is the same in both groups and is equal to a reference population (reference adjusted all-cause or crude probability).

We have a choice when making comparisons

- We want to compare probabilities of survival/death
- Need to 'remove' differences due to other causes.
- We can do this by
(1) Assume rate of death due to other causes is the same in both groups and is equal to zero for all ages (net probability).
(2) Assume rate of death due to other causes is the same in both groups and is equal to a reference population (reference adjusted all-cause or crude probability).
(1) Using a common external reference population
(2) Using one of the groups as the reference.

Summary

- Possible to make fair comparisons using all-cause or crude probabilities.
- Need to (age) standardize
- Need to use reference expected mortality rates.
- Useful alternative/complement to marginal net survival.
- I have explained from a modelling perspective - non-parametric possible. Builds on work by Sasieni and Brentnall 20016 ([7])
- Modelling more generalisable.
- Ideas also work for competing risks models ('separable effects').
- Need to think about which covariate distribution to standardize over.
- Need to think which reference expected rates to use.

Software

- All analysis in Stata.
- standsurv works for a many parametric models
- Exponential, Weibull, Gompertz, LogNormal, LogLogistic
- Flexible parametric (Splines:log-hazard or log cumulative scales)
- Standard, relative survival and competing risks models
- Can use different models for different causes.
- Various Standardized related measures.
- Survival, restricted means, centiles, hazards. . . and more
- Standard errors calculated using delta-method or M-estimation with all analytical derivatives,so fast

More information on standsurv available at

 https://pclambert.net/software/standsurv/
More details...[8]

Original Article

Reference-adjusted and standardized all-cause and crude probabilities as an alternative to net survival in population-based cancer studies

Paul C Lambert, ${ }^{1,2 *}$ Therese M-L Andersson, ${ }^{2}$ Mark J Rutherford ${ }^{\circ}$, ${ }^{1,3}$ Tor Åge Myklebust ${ }^{4,5}$ and Bjørn Møller ${ }^{4}$

References

[1] Syriopoulou E, Rutherford MJ, Lambert PC. Marginal measures and causal effects using the relative survival framework. International Journal of Epidemiology 2020;49:619-628.
[2] Lambert PC, Dickman PW, Rutherford MJ. Comparison of approaches to estimating age-standardized net survival. BMC Med Res Methodol 2015;15:64.
[3] Pavlic K, Pohar Perme M. Using pseudo-observations for estimation in relative survival. Biostatistics 2018;20:384-399.
[4] Corazziari I, Quinn M, Capocaccia R. Standard cancer patient population for age standardising survival ratios. Eur J Cancer 2004;40:2307-2316.
[5] Nelson CP, Lambert PC, Squire IB, Jones DR. Flexible parametric models for relative survival, with application in coronary heart disease. Statistics in Medicine 2007;
26:5486-5498.
[6] Lambert PC, Dickman PW, Nelson CP, Royston P. Estimating the crude probability of death due to cancer and other causes using relative survival models. Stat Med 2010;29:885 - 895.
[7] Sasieni P, Brentnall AR. On standardized relative survival. Biometrics 2016;73:473-482.
[8] Lambert PC, Andersson TML, Rutherford MJ, Myklebust TÅ, Møller B. Reference-adjusted and standardized all-cause and crude probabilities as an alternative to net survival in population-based cancer studies. International Journal of Epidemiology 2020;.

References 2

