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Age Standardisation

This talk is about taking averages from predictions from a
statistical model, i.e. regression standardization.

I will concentrate on relative survival models. Methods/software
also appropriate for standard and competing risks models.

I will basically be describing the standsurv command.

Usual practice: Take a weighted average over age groups to get
age standardised relative survival.

R̄(t) =
5∑

j=1

wj R̂j(t)

Usually estimate Rj(t) non-parametrically (Pohar-Perme /
Ederer II).

Paul C Lambert Standardization 26 Sept 2019 2



Age Standardisation

We can also age standardize from a model.

Ri(t) = f (t|Zi)

R̄(t) =
1

N

N∑
i=1

wi R̂i (t|Zi)

wi up or down-weights relative to external population.

I will generalise to covariates Z with exposure X

I am essentially using the G-formula, without time-dependent
exposures/confounding.
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Example model

Men diagnosed with Melanoma in England.

Five deprivation groups. Here I restrict to least and most
deprived groups (X ).

Relative survival model

Model the effect of age continuously using splines (Z ).

Interaction between age and deprivation groups.

Both age and deprivation group have non-proportional effects.

stpm2 dep5 agercs1 agercs2 agercs3 ///
agercs1 dep5 agercs2 dep5 agercs3 dep5, ///
scale(hazard) df(5) bhazard(rate) ///
tvc(dep5 agercs1 agercs2 agercs3) dftvc(3)
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Internal Age-Standardisation

Take average within each deprivation group

25,618 in least deprived and 9672 in most deprived.

R̄(t|X = x ,ZX=x) =
1

NX=x

NX=x∑
i=1

R̂i (t|X = x ,Zi)

standsurv, survival timevar(tt) ci ///
at1(., atif(dep5==1)) ///
at2(., atif(dep5==0)) ///
atvar(RS dep5 RS dep1) ///
contrast(difference) ///
contrastvar(RS diff)

Not comparable due to different confounding (age) distribution.

We can ask for a contrast between the at options.
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Internally standardized (separately)
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Age-Standardisation (combined age distribution)

R̄(t|X = x ,Z ) =
1

N

N∑
i=1

R̂i (t|X = x ,Zi)

standsurv, survival timevar(tt) ci verbose ///
atvar(RS dep5 stand RS dep1 stand) ///
at1(dep5 1 agercs1 dep5=agercs1 agercs2 dep5=agercs2 agercs3 dep5=agercs3) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
contrast(difference) ///
contrastvar(RS stand diff)

Comparable as age distribution is the same between the two
groups.
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External age-standardisation (ICSS)

We often use the ICSS weights so that estimates are comparable
between different studies.

R̄(t|X = x ,Z ) =
1

N

N∑
i=1

wi R̂i (t|X = x ,Zi)

standsurv, survival timevar(tt) ci verbose ///
indweights(w) ///
atvar(FR dep5 extstand FR dep1 extstand) ///
at1(., atif(dep5==1)) ///
at2(., atif(dep5==0)) ///
contrast(difference) ///
contrastvar(RS extstand diff)

Could fit separate models and still have comparable estimates.
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Externally Age standardized (ICSS)
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All-cause survival

We model use relative/net survival to make fair comparisons
between groups, by removing differences in other cause mortality
rates.

However, also useful to be able to quantify real world risks.

This can be through all-cause survival or crude probabilities of
death.

We reuse the population mortality rates to predict all-cause
survival.

S̄(t|X = x ,Z ) =
1

N

N∑
i=1

Ŝ∗i (t|Zi ,X = x)R̂i (t|Zi ,X = x)
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Incorporate expected mortality rates

standsurv, survival timevar(tt) ci ///
atvar(S dep5 S dep1) ///
at1(dep5 1 agercs1 dep5=agercs1 agercs2 dep5=agercs2 agercs3 dep5=agercs3) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
expsurv(using(popmort uk regions 2017.dta) ///

datediag(dx) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(age) ///
pmyear(year) ///
pmother(sex dep region) ///
pmmaxyear(2016) ///
at1(dep 5) ///
at2(dep 1) ///

) ///
contrast(difference) ///
contrastvar(S diff)
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Internal age-standardization
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Age-standardization (ICSS)

0.6

0.7

0.8

0.9

1.0
Al

l-c
au

se
 S

ur
vi

va
l

0 2 4 6 8 10
Years from diagnosis

Least Deprived
Most Deprived

Paul C Lambert Standardization 26 Sept 2019 14



Age-standardization (ICSS)

0.6

0.7

0.8

0.9

1.0
Al

l-c
au

se
 S

ur
vi

va
l

0 2 4 6 8 10
Years from diagnosis

Least Deprived
Most Deprived

Paul C Lambert Standardization 26 Sept 2019 14



Some comments

The differences between the groups on the previous slides could
be due to a combination of,

Differences in cancer mortality rates.
Differences in other cause mortality rates.

This may be interest, but often we want isolate differences in
cancer mortality rates.

Will come back to this in second talk.
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Avoidable Deaths

One way of trying to quantify differences between groups is to
estimate avoidable deaths.

How many deaths would be avoided if we could reduce the excess
mortality rate in one group to that observed in another group?

Need to define what population this refers to.

E.g. (average) number of individuals diagnosed in a calendar
year, Ñ .
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Avoidable Deaths 2

Avoidable Deaths

Ñ
[(

1− E [S∗(t|X ,Z )R(t|X ,Z )]
)
−
(
1− E [S∗(t|X ,Z )R(t|X = x ,Z )]

)]

This is the difference in the expected number of deaths and the
expected number of deaths if everyone was unexposed.

Note only manipulating X for relative survival and not expected
survival.
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Avoidable Deaths

count if yeardiag>=2008
local N AD = ‘r(N)’/5

standsurv if yeardiag>=2008, failure timevar(tt) ci ///
atvar(deaths total deaths dep10) ///
at1(.) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
expsurv(using(popmort uk regions 2017.dta) ///

datediag(dx) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(age) ///
pmyear(year) ///
pmother(sex dep region) ///
pmmaxyear(2016) ///

) ///
per(‘N AD’) ///
atref(2) ///
contrast(difference) ///
contrastvar(AD1)

Can also calculate avoidable deaths in age groups and sum.
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Avoidable Deaths
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Attributable fraction (Relative Survival Framework)

If we drop Ñ from the avoidable deaths equation we have the
numerator for the attributable fraction.

AF (t) =

(
1− E [S∗(t|X ,Z )R(t|X ,Z )]

)
−
(
1− E [S∗(t|X ,Z )R(t|X = x ,Z )]

)
1− E [S∗(t|X ,Z )R(t|X ,Z )]

AF (t) = 1−
(
1− E [S∗(t|X ,Z )R(t|X = x ,Z )]

)
1− E [S∗(t|X ,Z )R(t|X ,Z )]

This is a non-linear function of different at() options.

We use the userfunction() option.
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Attributable fraction code

mata:
function calcAF(at) {

// at1() is F(t,Z): at2() is F(t|unexposed,Z)
return(1 - at[2]/at[1])
}
end

standsurv, failure timevar(tt) ci verbose ///
atvar(Pdead Pdead dep102) ///
at1(.) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
expsurv(using(popmort uk regions 2017.dta) ///

datediag(dx) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(age) ///
pmyear(year) ///
pmother(sex dep region) ///
pmmaxyear(2016) ///

) ///
userfunction(calcAF) ///
userfunctionvar(AF)
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Attributable Fraction
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Comments

I have calculated the percentage reduction in deaths among the
whole population. Could restrict to the exposed using
if()/atif() options.

Could calculate AF using relative survival, but more awkward
interpretation.
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Crude Probabilities

Crude Probabilities enable us to partition the all-cause
probability of death into deaths due to cancer and deaths due to
other causes.
This is in a relative survival framework. Those more familiar
with competing risks will know this as the (cause-specific)
cumulative incidence function.

Fc(t|X ,Z ) = E

[∫ t

0

S∗(u|X ,Z )R(u|X ,Z )λ(u|X ,Z )du

]

Fo(t|X ,Z ) = E

[∫ t

0

S∗(u|X ,Z )R(u|X ,Z )h∗(u|X ,Z )du

]

Fc(t|X ,Z ) + Fo(t|X ,Z ) = F (t|X ,Z ) = 1− S∗(t|X ,Z )R(t|X ,Z )
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Crude Probabilities code

standsurv, crudeprob timevar(tt) ci verbose ode ///
atvar(CP dep5 CP dep1) ///
at1(dep5 1 agercs1 dep5=agercs1 agercs2 dep5=agercs2 agercs3 dep5=agercs3) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
expsurv(using(popmort uk regions 2017.dta) ///

datediag(dx) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(age) ///
pmyear(year) ///
pmother(sex dep region) ///
pmmaxyear(2016) ///
at1(dep 5) ///
at2(dep 1) ///

) ///
contrast(difference) ///
contrastvar(CP diff)
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Crude Probability Graphs
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Crude Probability Stacked Graphs
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Attributable fraction in crude probability framework

Can estimate proportional reduction in cancer deaths.
Can use cancer deaths as denominator...

E
[
Fc(t|X ,Z )

]
− E

[
Fc(t|X = 0,Z )

]
E
[
Fc(t|X ,Z )

]
.... or all deaths

E
[
Fc(t|X ,Z )

]
− E

[
Fc(t|X = 0,Z )

]
E
[
Fc(t|X ,Z )

]
+ E

[
Fo(t|X ,Z )

]
Just need to apply the userfunction() option again.

mata:

function calcAF_cancer1(at) {

return((at[1] - at[3])/at[1])

}

end

mata:

function calcAF_cancer2(at) {

return((at[1] - at[3])/(at[1] + at[2]))

}

end
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Life Expectancy

We have previously presented work on the loss in expectation of
life associated with a cancer diagnosis.

This has generally been presented conditional estimates, which is
useful as life expectancy as it is so strongly associated with age.

Calculation of life-expectancy requires extrapolation of all-cause
survival, but we can do this pretty well by combining
extrapolations of expected and relative survival.

Alternatively a restricted mean can be calculated.This is simply
the area under the marginal survival curve.

RMST = E

[∫ t∗

0

S∗(u|X ,Z )R(u|X ,Z )du

]
If t∗ is large enough so the all-cause survival is (effectively) zero,
this is an estimate of marginal life expectancy.
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Loss in Expectation of Life

The marginal loss in expectation in life is the difference between
the marginal life expectancy in the general population and the
marginal life expectancy of the cancer population.

LEL = E

[∫ t∗

0

S∗(u|X ,Z )du

]
− E

[∫ t∗

0

S∗(u|X ,Z )R(u|X ,Z )du

]

Can then manipulate exposures.

(
E
[ ∫ t∗

0
S∗(u|X = 1,Z )du

]
− E

[ ∫ t∗

0
S∗(u|X = 1,Z )R(u|X = 1,Z )du

])
−(

E
[ ∫ t∗

0
S∗(u|X = 0,Z )du

]
− E

[ ∫ t∗

0
S∗(u|X = 0,Z )R(u|X = 0,Z )du

])
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Code

gen tstar = 100 in 1
standsurv, rmst timevar(tstar) ci ///

atvar(LifeExp5 LifeExp1) ///
at1(dep5 1 agercs1 dep5=agercs1 agercs2 dep5=agercs2 agercs3 dep5=agercs3) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
expsurv(using(popmort uk regions 2017.dta) ///

datediag(dx) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(age) ///
pmyear(year) ///
pmother(sex dep region) ///
pmmaxyear(2016) ///
at1(dep 5) ///
at2(dep 1) ///
expsurvvars(PopExp5 PopExp1) ///

) ///
contrast(difference) ///
contrastvar(LifeExp diff)

gen LEL1 = PopExp1 - LifeExp1
gen LEL5 = PopExp5 - LifeExp5
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Code

gen tstar = 100 in 1
standsurv, rmst timevar(tstar) ci ///

atvar(LifeExp5 LifeExp1) ///
at1(dep5 1 agercs1 dep5=agercs1 agercs2 dep5=agercs2 agercs3 dep5=agercs3) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
expsurv(using(popmort uk regions 2017.dta) ///

datediag(dx) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(age) ///
pmyear(year) ///
pmother(sex dep region) ///
pmmaxyear(2016) ///
at1(dep 5) ///
at2(dep 1) ///
expsurvvars(PopExp5 PopExp1) ///

) ///
contrast(difference) ///
contrastvar(LifeExp diff)

gen LEL1 = PopExp1 - LifeExp1
gen LEL5 = PopExp5 - LifeExp5
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Code

gen tstar = 100 in 1
standsurv, rmst timevar(tstar) ci ///

atvar(LifeExp5 LifeExp1) ///
at1(dep5 1 agercs1 dep5=agercs1 agercs2 dep5=agercs2 agercs3 dep5=agercs3) ///
at2(dep5 0 agercs1 dep5 0 agercs2 dep5 0 agercs3 dep5 0) ///
expsurv(using(popmort uk regions 2017.dta) ///

datediag(dx) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(age) ///
pmyear(year) ///
pmother(sex dep region) ///
pmmaxyear(2016) ///
at1(dep 5) ///
at2(dep 1) ///
expsurvvars(PopExp5 PopExp1) ///

) ///
contrast(difference) ///
contrastvar(LifeExp diff)

gen LEL1 = PopExp1 - LifeExp1
gen LEL5 = PopExp5 - LifeExp5

Paul C Lambert Standardization 26 Sept 2019 31



LEL estimates

list PopExp1 LifeExp1 LEL1 P_LEL1 in 1

+--------------------------------------------+

| PopExp1 LifeExp1 LEL1 P_LEL1 |

|--------------------------------------------|

1. | 27.210407 23.42349 3.786917 .1391716 |

+--------------------------------------------+

. list PopExp5 LifeExp5 LEL5 P_LEL5 in 1

+---------------------------------------------+

| PopExp5 LifeExp5 LEL5 P_LEL5 |

|---------------------------------------------|

1. | 23.244415 19.456234 3.788181 .1629717 |

+---------------------------------------------+
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Other Things

standsurv works with standard survival models, relative survival
models and competing risk models.

Could have written this whole talk from more of a causal
perspective using potential outcomes.

Works with streg, stpm2, strcs models.
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Other Things 2

Key points

Ability to restrict standardization to subgroups.

Ability to manipulate exposures.

Ability to standardize to external population.

Ability to add weights.

Range of different marginal measures.

Contrasts between marginal measures.

Non-linear transformation of marginal effects.

Standard errors calculated using delta methods or M-estimation.

Centiles, marginal hazards, RMST.....
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Other Things 3

Competing risks:

Can use different models for different causes. E.g. Weibull for
one cause and flexible parametric model for another

models allows different time-scales (Nicks talk).

Standardized CIFs and other measures.

Written in Mata, analytic derivatives, so fast.

Different weights for different at() options enables mediation
analysis (See Betty’s talk)

More information on standsurv available at
https://pclambert.net/software/standsurv/
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