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Introduction to the course
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Introduction to the Course

• This course will give an overview of flexible parametric survival models.

• It will focus on the implementation in Stata using stpm3.

• There are different reasons why we model

Description
Prediction
Causality

• I will touch on all three of these today, but this course is not intended to
cover theory/issues for all three of these areas.

• I want to demonstrate the advantages that stpm3 can give you when
modelling survival data.
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Some questions for you

• Who would classify themselves as a (bio)statistician?

• Who would classify themselves as an epidemiologist?

• Who has used flexible parametric models previously?

Using stpm2

Using stpm3

In R (flexsurv or rstpm2)
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Timetable

Time Topic
11:00–12:00 - Introduction to the course

- Introduction to flexible parametric survival models
- Various type of predictions

12:00–12:15 - Break
12:15–13:00 - Contrasts

- Incorporating non-linear functions and interactions
13:00–13:45 - Lunch
13:45–15:00 - Time-dependent effects

- Marginal contrast
- User-defined functions in standsurv

15:00–15:15 - Break
15:15–16:15 - Models on the log-hazard (and other) scales

- What to present?
- Convergence issues

16:15–16:30 - Break
16:30–17:30 - Some extensions

- Final questions and wrap-up
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Computing

• There is not time for computer lab sessions today.

• I have included in the course meterial some exercises that I will run through
today.

• You can choose to run code simultaneously with me or just watch as I
explain what the code does.

• All my code is in Stata. There are some packages in R, where you can fit
similar models (Rstpm2,flexsurv).

• The slides and code are avaiable on my website.
www.pclambert.net/courses/stpm3course
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Code to produce the slides

• I have made code and data available on the course website.

• you can use this if you want to replicate graphs or output.

• Note that most graphs have a footnote which gives the name of the do file
which contains the code used to plot the graph.

• Note that I use a graph scheme Mark Rutherford developed for the 2nd
edition of our book. This is available in the course files.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 9



Censored survival data

1984 1986 1988 1990 1992 1994 1996

Date

0 2 4 6 8 10

Year since entry

Calendar time (left) and time from entry (diagnosis) in years (right)
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Survival analysis

• We have censored data and all survival analysis methods need to account for
this

• We need to define when time 0 is

e.g. date of diagnosis, date of randomization.

• We need to define what our event is and when it occured.

e.g. date of death from any cause.

• For those who did not have the event, we need to know the latest time we
knew they were event free.

e.g. date of emmigration / end of study follow-up
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Measures of interest

• We are interested in the proportion with/without an event. The survival or
failure function.

S(t) = P(T > t) F (t) = 1− S(t)

• We are interested in the rate of the event for those still at risk at time t.

h(t) = lim
dt→0

P(t ≤ T < t + dt|T ≥ t)

dt
• Hazard is a general term. If our outcome is death then the hazard rate is a
mortality rate.

• We use hazards because
They give information about those still alive/at risk at different points in
time.
Rates are a good way to deal with censored data
It is often convenient to make assumptions about rates, e.g. proportional
hazards.
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Measures of interest 2

• If we have h(t) we can obtain S(t).

S(t) = exp

(
−
∫ t

0

h(u)du

)
• If we have S(t) we can obtain h(t).

h(t) = − d

dt
ln [S(t)]

• I will mention cumulative hazards. This is just the ‘amount’ of hazard
experienced by time t.

H(t) =

∫ t

0

h(u)du
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Example datasets

• I will use some example datasets to illustrate the methods.

• These are all publically available datasets, so you can run all examples.

• The example datasets are

North West England breast cancer data
England and Wales under 50 breast cancer data
Rotterdam breast cancer data
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North West England breast cancer data (breast NW.dta)

• 14,823 women diagnosed with breast cancer in the North West region of
England between 1996 and 1990 with follow-up to the end of 1995

. describe
Contains data from breast_NW.dta
Observations: 14,823 Ch28 Adult Breast 174, 175

Variables: 9 9 May 2024 13:24

Variable Storage Display Value
name type format label Variable label

ident float %9.0g Identifier
sex byte %8.0g sexlb Sex
dep byte %8.0g caquinlb GB quintile Carstairs score
datediag int %9.0g Date of diagnosis
agediag float %9.0g Age at diagnosis in years
dead byte %8.0g deadlb Vital status
survtime float %9.0g Follow-up time in years
dateexit int %9.0g Date of exit
agegrp float %9.0g agelab ICSS age groups

Sorted by: sex
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England and Wales breast cancer data aged < 50 (breast EW50.dta)

• 24,883 women diagnosed with breast cancer in England and Wales between
1996 and 1990 with follow-up is to the end of 1995

. describe
Contains data from breast_EW50.dta
Observations: 24,883 Ch28 Adult Breast 174, 175

Variables: 10 9 May 2024 13:24

Variable Storage Display Value
name type format label Variable label

ident float %9.0g Identifier
sex byte %8.0g sexlb Sex
dep byte %8.0g caquinlb GB quintile Carstairs score
region byte %9.0g regionlb NHS Region 1998
datediag int %9.0g Date of diagnosis
agediag float %9.0g Age at diagnosis in years
dead byte %8.0g deadlb Vital status
survtime float %9.0g Follow-up time in years
dateexit int %9.0g Date of exit
agegrp float %9.0g agelab ICSS age groups

Sorted by: sex
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Rotterdam breast cancer data

• 2,982 patients with primary breast cancer whose records were included in the
tumor bank at Rotterdam, The Netherlands.

• Follow-up time ranged from 1 to 231 months (median, 107 months).

• Various covariates are included including use of hormonal therapy (hormon),
age at surgery (age), tumor size in 3 classes, (size), tumor grade 2 or 3
(grade), number of positive lymph nodes (nodes), progesterone receptors,
fmol/l (pr), estrogen receptors, fmol/l (er).

• We can use overall (all cause) survival, cause-specific survival and relapse
free survival.
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Rotterdam breast cancer data
. describe
Contains data from rott3.dta
Observations: 2,982 Rotterdam breast cancer data (augmented with cause of death)

Variables: 23 21 Sep 2023 15:30
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

pid int %4.0f Patient ID number
year int %4.0f Year of surgery
rf float %5.1f Relapse free interval [mo]
rfi byte %3.0f Relapse indicator
mf float %5.1f Metastasis free [m]
mfi byte %3.0f noyes Metastasis status
os float %5.1f Overall survival (m)
osi byte %8.0f osi Overall survival
age byte %3.0f age at surgery
meno byte %4.0f post pre/post meno
size byte %9.0g size Tumour size, 3 classes (t)
grade byte %8.0g Differentiation grade (diff)
nodes byte %8.0g Number of positive nodes (nrpos)
pr int %8.0g PgR (fmol/l)
er int %8.0g ER (fmol/l)
hormon byte %5.0f adjhormo Hormonal therapy
chemo byte %8.0f adjchemo Chemo therapy
enodes float %9.0g exp(-0.12 * nodes)
pr_1 double %10.0g log(pr + 1)
enodes_1 double %10.0g enodes^2
recent byte %9.0g recent year of surgery, dichotomized
dcause byte %13.0f dcause cause of death
cause float %12.0g causelab

Sorted by:
Note: Dataset has changed since last saved.
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Spline functions
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Introduction to spline functions

• This is a very brief introduction to spline functions.

• You have probably come accross using polynomials to model a non-linear
function, e.g. a quadratic function.

yi = β0 + β1xi + β2x
2
i

• Splines are an alternative way to model a non-linear function.

• Like polynomials, we derive additional variables and include these in the
linear predictor.

yi = β0 + β1z1i + β2z2i + . . .+ βkzki .

• There different types of spline function and many different ways to calculate
the z variables.
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What are splines?

• Flexible mathematical functions defined by piecewise polynomials.

• The points at which the polynomials join are called knots.

• Constraints ensure the function is smooth.

• The most common splines used in practice are cubic splines.

• However, splines can be of any degree, n.

• Function is forced to have continuous 0th, 1st and 2nd derivatives.

• Regression splines can be incorporated into any regression model with a
linear predictor.

• Try these interative graphs
http://pclambert.net/interactivegraphs/
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Cubic splines

• Cubic spline functions can be used in any regression model by calculation of
some extra variables.

• After defining K knots, t1, . . . , tK the spline function is

S(x) =
3∑

j=0

β0jx
j +

K+4∑
i=4

βi3(x
j − ti)

3
+

• Note the “+” notation means that u+ = u if u > 0 and u+ = 0 if u ≤ 0.

• There will be K +4 parameters (including the intercept) needed in the linear
predictor.
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Restricted Cubic Splines

• Restricted cubic splines can be fitted by creating K − 1 derived variables,
where K is the number of knots [1].

• For knots, k1, . . . , kK , a restricted cubic spline function can be written

s(x) = γ0 + γ1z1 + γ2z2 + . . .+ γK−1zK−1

• The derived variables zj (also known as the basis functions) are calculated as
follows:

z1 = x
zj = (x − kj)

3
+ − λj(x − kmin)

3
+ − (1− λj)(x − kmax)

3
+

where
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Restricted Cubic Splines 2

λj =
kmax − kj
kmax − kmin

• There are a variety of commands for calculating spline variables (sometimes
called basis function). I suggest you use gensplines. You can install
gensplines in Stata using,

Installing gensplines
. ssc install gensplines

• I now tend to use natural splines more than restricted cubic splines.

• Natural splines are calculated differently, but give identical fitted values
when used in a model.

• gensplines calculates spline functions in a same way as the R splines2

package[2].
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Restricted Cubic Splines 3

• Try these interactive graphs to understand more details about continuity
corrections and the number and location of knots
http://pclambert.net/interactivegraphs/
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Using splines with survival data

• Can be used to model non-linear effects of continuous covariates.

• We use them a lot for modelling of baseline (excess) hazard.

• Often better to use ln(t) rather than t.

• Boundary knots are usually placed at the minimum and maximum of the
(log) event times.

• Interior knots placed at equally spaced centiles of the distribution of event
times.

• When using Poisson regression we are modelling the log hazard, so our
model is

ln[h(t|xi)] = s (ln(t)|γ, k0) + xiβ

where s (ln(t)|γ, k0) is a restricted cubic spline function with knots, k0
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Introduction to flexible parametric models
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Flexible Parametric Survival Models

In this lecture we will,

• Look at standard parametric survival models.

• Extend these to be more ‘flexible’ using spline functions.

• See a number of advantages in terms of model fit.

• See a number of advantages in terms of predictions.

• Introduce you to the stpm3 and standsurv commands.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 28



What is a parametric survival model?

• In a parametric survival model the survival function can be expressed as a
mathematical function of follow-up time and a set of parameters.

• Due to the mathematical relationship between the hazard, survival and
density functions, there is also a mathematical function for all these
functions.

• There are also parameters for the effect of covariates.

• These parameters are estimated when you fit a model.

Note that a Cox model is a semi-parametric model as a parametric function is
not estimated for the hazard/survival/density functions. It only directly estimates
the (relative) effect of covariates.
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Examples of Parametric Models

• The most simple model is the exponential model.

h(t) = λ, S(t) = exp(−λt), f (t) = λ exp(−λt)

• The hazard rate is constant over time.

• The Weibull model is a commonly used survival model.

h(t) = λγtγ−1, S(t) = exp(−λtγ), f (t) = λγtγ−1 exp(−λtγ)

• The hazard rate is a monotonic function, i.e. it cannot have a turning point.

Other common parametric survival models include the lognormal, log-logistic,
Gompertz, gamma, generlized gamma
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The Weibull model

h(t) = λγtγ−1, S(t) = exp(−λtγ), f (t) = λγtγ−1 exp(−λtγ)

• We are interested in how the survival/hazard functions vary between
individuals (covariate patterns).

• We have choices in how we model covariates,

Proportional hazards

h(t|xi) = λγtγ−1 exp(xiβ)

Accelerated Failure

S(t|xi) = exp(−λ exp(−γxiβ)t
γ)

• We concentrate on hazard / cumulative hazard models.
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Various Weibull model functions, λ = 0.2, γ = 1.2
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Graph code in Weibull_example_functions.do
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Why use Parametric Survival Models?

• Parametric Models have advantages for

Understanding.
Prediction (including complex predictions, e.g. marginal effects)
Extrapolation.
Quantification (e.g., absolute and relative measures of risk).
Modelling time-dependent effects.
All cause, cause-specific or relative survival.
etc etc

• However, standard parametric models are limited in that they impose a
certain shape on hazard/survival functions.

• None of the standard models may fit well to your data.
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The Cox model I

• Web of Science: over 38,659 citations (April 2023).

hi(t|xi) = h0(t) exp (xiβ)

• Estimates (log) hazard ratios.

• Advantage: The baseline hazard, h0(t) is not estimated from a Cox model.

• Disadvantage: The baseline hazard, h0(t) is not estimated from a Cox
model.
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The Cox model II

• The crucial assumption of the Cox model is that the estimated parameters
are not associated with time, i.e., we assume proportional hazards.

• If you are only interested in the relative effect of a covariate on the hazard
rate and the assumption of proportional hazards is reasonable, then the Cox
model is probably the most appropriate model. In other situations
alternative models may be more appropriate.

• However, whenever we estimate a relative effect we should ask “relative to
what?”

• Discussion about whether hazard ratios are good causal measures[3, 4, 5, 6].
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Quote from Sir David Cox (Reid 1994 [7])

Reid “What do you think of the cottage industry that’s grown up around [the
Cox model]?”

Cox “In the light of further results one knows since, I think I would normally
want to tackle the problem parametrically. . . . I’m not keen on
non-parametric formulations normally.”

Reid “So if you had a set of censored survival data today, you might rather fit
a parametric model, even though there was a feeling among the medical
statisticians that that wasn’t quite right.”

Cox “That’s right, but since then various people have shown that the answers
are very insensitive to the parametric formulation of the underlying
distribution. And if you want to do things like predict the outcome for a
particular patient, it’s much more convenient to do that parametrically.”
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Flexible parametric models: basic idea

• Consider a Weibull survival curve.

S(t) = exp (−λtγ)

• If we transform to the log cumulative hazard scale.

ln [H(t)] = ln[− ln(S(t))]

ln [H(t)] = ln(λ) + γ ln(t)

• This is a linear function of ln(t)
• Introducing covariates gives

ln [H(t|xi)] = ln(λ) + γ ln(t) + xiβ

• Rather than assuming linearity with ln(t) flexible parametric models use
natural splines for ln(t).
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Flexible parametric models: incorporating splines

• We thus model on the log cumulative hazard scale.

ln[H(t|xi)] = ln [H0(t)] + xiβ

• This is a proportional hazards model.
• Natural cubic splines with knots, k0, are used to model the log baseline
cumulative hazard.

ln[H(t|xi)] = ηi(t) = s (ln(t)|γ, k0) + xiβ

• For example, with 4 knots we can write

ln [H(t|xi)] = ηi(t) = γ0 + γ1z1i + γ2z2i + γ3z3i︸ ︷︷ ︸
log baseline

cumulative hazard

+ xiβ︸︷︷︸
log hazard
ratios
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Survival and hazard functions

• Log cumulative hazard functions are not that interesting, but We can
transform to the survival scale

S(t|xi) = exp(− exp [ηi(t)]))

• The hazard function is a bit more complex.

h(t|xi) =
ds (ln(t)|γ, k0)

dt
exp [ηi(t)]

• This involves the derivatives of the spline functions.

• However, these are easy to calculate.

• Most software will also supply derivatives.
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Incorporating spline functions

• The linear predictor is

Linear Predictor

ηi(t) = s (ln(t)|γ, k0) + xiβ

• For models on the log cumulative hazard scale.

Survival and hazard functions

S(t) = exp (− exp [ηi(t)]) h(t) =
ds(ln(t)|γ, k0)

dt
exp [ηi(t)]

• Feed these into the likelihood, evaluated at time ti .

ln Li = di ln [h(ti)] + ln [S(ti)]
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Incorporating spline functions 2

• This can be extended to delayed entry (left tunctation).

ln Li = di ln [h(ti)] + ln [S(ti)]− ln [S(t0i)]

• As we can write the (log) hazard and survival functions analytically, these
models are fast to fit.

• This is not the case when using splines for the linear predictor on the log
hazard scale (but less of an issue when modern, fast computers).
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A history of software for flexible parametric models

• Patrick Royston wrote stpm around 2000 [8].

• I wrote stpm2 around 2007 [9].

Relative survival models
Better predictions

• stpm3 released in 2023.
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Why a new command, stpm3∗

• stpm2 written before Stata included factor variables

• Use better basis functions for spline functions (natural splines).

• Make predictions and contrasts easier.

• Use frames for predictions.

• Include splines on log hazard scale.

• Include functional forms of covariates in linear predictor (extended
functions).

• Make marginal/standardized predictions much, much easier.

This was the main reason

• More in Mata (sometimes Python) for speed improvements.
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stpm3 - most important syntax∗

stpm3 [(extended) varlist], [options]

• scale() - compulsory option - We will mainly be using lncumhazard and
lnhazard).

• df(#) - the number of spline variables for the baseline. Knots are placed at
evenly distrributed centiles of the distribution of log event times.

• eform exponentiate coefficients in first equation - gives hazard ratios for a
proportional hazards model.

• knots(# # ...) - user defined knots positions

• tvc(varlist) - variables with time-dependent effect - supports factor
variables and extended functions.

• dftvc(varlist) - number of spline variables for time-dependent effects.

• knotstvc() - knot positions for time-dependent effects.
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Fitting a proportional hazards model

• Example: 24,883 women aged ≤ 50 diagnosed with breast cancer in England
and Wales 1986-1990.

• Compare five deprivation groups from most affluent to most deprived.

• No information on cause of death, but given their age, most women who die
will die of their breast cancer.

Proportional hazards models

. stcox i.dep,

. stpm3 i.dep, df(5) scale(lncumhazard) eform

• The df(5) option implies using 4 internal knots and 2 boundary knots at
their default locations.

• The scale(lncumhazard) requests the model to be fitted on the log
cumulative hazard scale.
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Cox Model

. stcox i.dep, nolog noshow

Cox regression with Breslow method for ties

No. of subjects = 24,883 Number of obs = 24,883
No. of failures = 7,365
Time at risk = 104,613.63

LR chi2(4) = 62.25
Log likelihood = -73291.085 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

dep
2 1.048952 .0354078 1.42 0.157 .9818003 1.120698
3 1.105275 .0383099 2.89 0.004 1.032682 1.18297
4 1.213043 .0437555 5.35 0.000 1.130245 1.301906

mostdep 1.309803 .051344 6.88 0.000 1.212939 1.414402

• Only gives relative effects, i.e. hazard ratios.
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Flexible parametric proportional hazards model

. stpm3 i.dep, scale(lncumhazard) df(5) eform nolog

Number of obs = 24,883
Wald chi2(4) = 63.40

Log likelihood = -22496.684 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep
2 1.048989 .0354091 1.42 0.157 .9818344 1.120737
3 1.105245 .0383089 2.89 0.004 1.032655 1.182939
4 1.213022 .0437548 5.35 0.000 1.130226 1.301884

mostdep 1.309804 .0513441 6.88 0.000 1.21294 1.414403

time
_ns1 -20.5192 .7302075 -28.10 0.000 -21.95038 -19.08802
_ns2 3.829793 .3917803 9.78 0.000 3.061918 4.597668
_ns3 -1.074997 .0182917 -58.77 0.000 -1.110849 -1.039146
_ns4 -.601024 .0128829 -46.65 0.000 -.6262739 -.575774
_ns5 -.3340791 .0109536 -30.50 0.000 -.3555478 -.3126103

_cons -1.14467 .023338 -49.05 0.000 -1.190412 -1.098928

Note: Estimates are transformed only in the first equation.
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New variables created

The baseline linear predictor (xb0), and survival functions can be calculated
using the ns variables and the parameters.

. list id _t _d _ns* in 1/5, noobs abb(7)

ident _t _d _ns1 _ns2 _ns3 _ns4 _ns5

351119 5 0 0 0 0 0 -.00047506
351638 5 0 0 0 0 0 -.00047506
351665 1.191 1 .05313304 .10663582 .83830265 .00229822 0
351723 1.673 1 .01334769 .02707449 .80412155 .15583537 0
351876 5 0 0 0 0 0 -.00047506

. gen xb0 = _b[time:_ns1]*_ns1 + _b[time:_ns2]*_ns2 + _b[time:_ns3]*_ns3 + ///
> _b[time:_ns4]*_ns4 + _b[time:_ns5]*_ns5 + _b[time:_cons]
. gen H0 = exp(xb0)
. gen S0 = exp(-H0)
. list id _t _d xb0 H0 S0 in 1/5, noobs

ident _t _d xb0 H0 S0

351119 5 0 -1.144511 .3183795 .7273268
351638 5 0 -1.144511 .3183795 .7273268
351665 1.191 1 -2.729079 .0652794 .9368057
351723 1.673 1 -2.272954 .1030075 .9021202
351876 5 0 -1.144511 .3183795 .7273268
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Proportional hazards models

• Do not try and interpret the coefficients of the spline ( ns) parameters.

• Together they give us the hazard/survival functions etc.

• FPM and Cox hazard ratios and 95% CIs are very similar.

• I have yet to find an example of a proportional hazards model, where there
is a large difference in the estimated hazard ratios.

• Actually, hazard ratios are usually fairly robust to incorrect specification of
baseline hazard, though there are some exceptions, e.g. when there is
differential follow-up between covariate patterns.

• It is, of course, preferable to model the baseline hazard well! Particularly if
you are intersted in absolute risks.

• In stpm2 we use scale(hazard). In stpm3 we use scale(lncumhazard)
as we need to distinguish between scale(lncumhazard) and
scale(lnhazard) models.
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Modelling the baseline

• We have used df(5) to model the baseline.

• This means there will be 6 knots (4 internal).

• Boundary knots are at the minimum and maximum event times (by default).

• The remaining knots placed at equally spaced percentiles of the event times.

• For, df(5) these are 20th, 40th, 60th and 80th percentiles

• Note we use percentiles of event times (i.e. excluding censored
observations), so with lots of early events, there will be more knots early on.

• We will discuss issues around selecting the number and location of the knots
later.
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Flexible parametric models: predictions
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Predictions from Parametric Models

• We want to predict various measures after fitting a model. E.g. survival
functions, hazard functions.

• We may want contrasts, e.g. differences in survival, hazard ratios.

• An advantage of parametric models is that it is easy to predict survival,
hazard functions etc, for any covariate pattern at any point in time.

• Many predictions will be functions of time.

• It is often useful to specify the times at which you want predictions rather
than predict at the observed times.

• We are interested in conditional predictions and marginal predictions.

• We will discuss the differences between these and then show you how to do
them in Stata.
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Different types of predictions

• We want to predict different types of function.

hazard functions, survival functions etc

• There three main types of predictions we may be interested in.

Predict at observed values of covariates.
Predict at user specified values of covariates
Take average of predictions (marginal/standardized effects)

• We may also be interested in contrasts in the above, e.g. when comparing
unexposed vs exposed.

• Difference choices for time.

Predict at observed event/censoring times ( t).
Predict at single time point for all subjects (e.g. 5 years).
Predict at user specified time values (e.g. 100 values between 0 and 10).
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Commands for conditional and marginal predictions

• After fitting an stpm3 model,

For conditional predictions, use predict.
For marginal predictions, use standsurv.

• I will initially show some simple examples, but the predict and standsurv

commands are very powerful with many options.

• Note that stpm2 the predcict command had a meansurv option to
estimate marginal survival. In stpm3 you have to use standsurv for
marginal predictions.
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Conditional predictions

• Our model will usually contain several covariates, e.g. (age, sex and
treatment).

• We may want to predict what the survival function is for a 65 year old male
taking a particular treatament.

• We refer to this as a conditional prediction in that it is the predicted survival
function conditional on specific values of all covariates included in the model.

• We may want to compare betweeen different covariate patterns, e.g., males
aged 65 on Treatment A and males aged 65 on Treatment B.

• With many covariates there are many different combinations of predictions.
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Conditional predictions 2

• We would write a prediction of the survival function as,

Ŝ(t|x∗, β̂)

• This is for covariate pattern, x∗ and estimated model parameters, β̂.

• We need to specify the values of the covariates we want predictions for.

• If a covariate is in the model be have to specify a value for it.

• We can choose the value(s) of time to predict at. If plotting then usually
100 points is sufficient for the function to appear smooth.
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Model is a function of deprivation and age

. stpm3 i.dep agediag, scale(lncumhazard) df(5) eform nolog
Number of obs = 24,883
Wald chi2(5) = 148.15

Log likelihood = -22455.915 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep
2 1.046464 .0353249 1.35 0.178 .9794686 1.118041
3 1.098292 .0380768 2.70 0.007 1.026142 1.175515
4 1.203149 .0434151 5.13 0.000 1.120996 1.291322

mostdep 1.290682 .0506453 6.50 0.000 1.19514 1.393862

agediag .9813256 .0020177 -9.17 0.000 .9773788 .9852882

time
_ns1 -20.52409 .7301018 -28.11 0.000 -21.95506 -19.09312
_ns2 3.828002 .3917218 9.77 0.000 3.060241 4.595762
_ns3 -1.076697 .0183083 -58.81 0.000 -1.112581 -1.040813
_ns4 -.6020499 .0129004 -46.67 0.000 -.6273342 -.5767656
_ns5 -.3347711 .0109738 -30.51 0.000 -.3562794 -.3132628

_cons -.3407907 .0902046 -3.78 0.000 -.5175885 -.1639929

Note: Estimates are transformed only in the first equation.
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Predict at observed values of covariates.

• The default is to predict at values of t.

. predict s, survival

. twoway (scatter s _t, mcolor(%20) msize(vsmall) mlwidth(none)), ///
> ylabel(,format(%3.1f)) ///
> xtitle("Years from diagnosis") ///
> ytitle("S(t)") ///
> note("Graph code in ${dofile}", ///
> size(vsmall) span color(gs3%50))

• I very rarely predict at values of t and when I do it is usually by mistake.
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Predict at observed values of covariates. 2
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• We strongly suggest you predict at user defined value of time using the
timevar() option rather than at t, unless you have good reason not to.

• We can predict at user defined values of covariates by using the at1(),
at2(), . . . options.

• We can have as many at options as we want.
• We also like to save predictions to a new frame to separate the data used to
fit the model from the prediction data.
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The timevar() and at() options.

• Around 99% of the time that I use predict I use the timevar() option and
multiple at() options.

• The timevar() option specified the time(s) we want predictions at. For
example

timevar(0 10, step(0.1)) or timevar(0 10, n(101))

• The at() options enable multiple predictions from one call to the predict
command. This is useful as we can then peform contrasts between different
covariate patterns.

E.g. Predictions for selected ages
at1(age 40 dep 1) at2(age 60 dep 1) at3(age 80 dep 1)
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Using frames

• Stata introduced frames in Stata 16.

• Frames enable us to have multiple datasets in memory.

• Our predictions for plotting/tabulation are often a different size to our
analysis data.

• In stpm3 I strongly recommend you (nearly always) predict to a frame.

• You can merge predictions to a new frame.

• In stpm2 predictions were usually ‘attached’ on the side of our analysis data.
This caused confusion and mistakes.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 61



Predict and plot hazard function

. predict h40_dep1 h40_dep5, hazard ci frame(hazpred, replace) per(1000) ///
> timevar(0.1 5, step(0.1)) ///
> at1(dep 1 agediag 40) ///
> at2(dep 5 agediag 40)
Predictions are stored in frame - hazpred

.

. frame hazpred {

. twoway (line h40_dep1 h40_dep5 tt), ///
> xtitle("Years from diagnosis") ///
> ytitle("Mortality rate (per 1000 py)") ///
> ylabel(0(20)100) ///
> title("Predicted hazard rate for a 40 year old") ///
> legend(order(1 "Least deprived" 2 "Most deprived")) ///
> note("Graph code in ${dofile}", size(vsmall) span color(gs3%50))
. }

• Predictions saved to a new frame, hazpred.
• The timevar() option specifies what times to predict at. Between 0.1 amd
5 in steps of 0.1.

• The per(#) option multiplies the predicted values by #.
• Note you can have multiple at options.
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List hazard predictions

. frame hazpred: list in 1/10, noobs

tt h40_dep1 h40~1_lci h40~1_uci h40_dep5 h40~5_lci h40~5_uci

.1 39.152223 35.274082 43.456739 50.533082 45.188214 56.510141

.2 42.181874 38.592435 46.105162 54.443398 49.379116 60.027069

.3 45.8755 42.411563 49.622351 59.210695 54.20825 64.674777

.4 49.647675 46.26021 53.283191 64.079376 59.070154 69.513385

.5 53.40641 50.051484 56.986215 68.930708 63.857744 74.406678

.6 57.135303 53.758485 60.724235 73.743525 68.542869 79.338777

.7 60.8351 57.370058 64.509424 78.518787 73.117777 84.318754

.8 64.510701 60.882671 68.354928 83.262821 77.582753 89.358743

.9 68.16762 64.298758 72.269271 87.98274 81.942702 94.467993
1 71.810984 67.625452 76.255571 92.685167 86.205559 99.651812

• The default name of time variable is tt. You can change this.

• With the ci option suffixes lci and uci are added to the variable name.
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Predicted hazard function
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Predicted survival function

. predict S40_dep1 S40_dep5, survival ci frame(survpred, replace) ///
> timevar(0 5, step(0.1)) ///
> at1(dep 1 agediag 40) at2(dep 5 agediag 40)
Predictions are stored in frame - survpred
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Specifying single time points

• Predict survival at 1 and 5 years.

. gen t1 = 1

. gen t5 = 5

. predict S1 S5, surv frame(Spred1_5, replace) ///
> at1(., attimevar(t1)) ///
> at2(., attimevar(t5))
Predictions are stored in frame - Spred1_5
.
. frame Spred1_5 {
. hist S1, name(S1, replace) title("1 year") xlab(,format(%3.1f)) wid(0.005)
(bin=12, start=.90081675, width=.005)
. hist S5, name(S5, replace) title("5 year") xlab(,format(%3.1f)) wid(0.005)
(bin=47, start=.52427243, width=.005)
. graph combine S1 S5, xcommon ycommon ///
> note("Graph code in ${dofile}", size(vsmall) span color(gs3%50))
. }

• Predictions saved to a new frame.

• A . (dot) in at options predicts at observed values of covariates.

• A separate time variable for each at option, using attimevar().
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Specifying single time points 2
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Predict over range of a variable

. frame create agepred

. frame agepred {

. range agediag 18 50 33
Number of observations (_N) was 0, now 33.
. gen dep = .
(33 missing values generated)
. gen t5 = 5
. predict S_dep1 S_dep5, surv ci timevar(t5) merge ///
> at1(dep 1, obsvalues) at2(dep 5, obsvalues)
. }

.

. frame agepred {

. twoway (line S_dep1 S_dep5 agediag) ///
> (rarea S_dep1_lci S_dep1_uci agediag, pstyle(p1line) color(%30)) ///
> (rarea S_dep5_lci S_dep5_uci agediag, pstyle(p2line) color(%30)) ///
> , legend(order(1 "Least Deprived" 2 "Most deprived") ///
> cols(1) pos(11)) ///
> ylabel(0.4(0.1)1, format(%3.1f)) ///
> ytitle("Survival at 5 years") ///
> xtitle("Age at diagnosis") ///
> note("Graph code in ${dofile}", size(vsmall) span color(gs3%50))
. }

. grinset t=5 r=5: hist agediag, freq
(bin=43, start=18.207001, width=.73934883)
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Predict over range of a variable II

• Create a new frame containing values you want to predict at.

• Create values you want to predict at (using range here).

• Use merge as we are predicting within a frame. These are ‘out-of-sample’
predictions.

• obsvalues option predicts at new ‘observed’ values of agediag (in frame
agepred). A bit confusing, but these are the ‘observed’ values in our new
frame.

• grinset is a user written command that places a mini-graph on an existing
graph.

• We are assuming linearity for age here, we will relax this later.
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Predict over range of a variable III

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
rv

iv
al

 a
t 5

 y
ea

rs

20 30 40 50
Age at diagnosis

Least Deprived
Most deprived

Graph code in stpm3_predictions

0

500

1000

1500

Fr
eq

ue
nc

y

20 30 40 50
Age at diagnosis in years

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 70



Marginal predictions

• For marginal predictions we are interested in the average (survival) in a
(study) population.

• For example, we could estimate the average (marginal) survival.

Ŝm(t) =
1

N

N∑
i=1

Ŝ(t|xi, β̂)

• This is averaged over all study subjects.

• If calculated for all individuals in the study, this should be similar to the
corresponding Kaplan-Meier estimate.

• Later in the course we will ‘manipulate’ exposures. For example, we predict
as if everyone was exposed or everyone was unexposed.
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The mean covariate method

• Note that a marginal estimate is different from using the mean value of all
covariates [10],

• Some software (e.g., stcurve in Stata) uses the mean covariate method.

• Using the mean coviatate method, we obtain

Ŝ(t|x∗, β̂)

where x∗ = (x̄1, x̄2, x̄3, . . .)

• This is the survival of an ‘average’ individual, who happens to have the
average values of all covariates.

• Problem with categorical covariates. May be someone with a proportion of
each stage and who is 50% male.
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Overall Marginal Survival

• Use standsurv for marginal predictions.

. range tt 0 5 101
(24,782 missing values generated)
. standsurv , survival at1(.) timevar(tt) ci atvar(Sm) frame(msurv, replace)

• The standsurv command obtains averages of various measures.

• We are obtaining the average survival (survival option).

• A variable, tt, has been created for the times we want to predict at. This is
passed to standsurv using timevar(tt).

• Results are saved to a new frame, msurv.

• The at1(.) option means that we will average over observed values of
covariates for each individual.

• The variable containing the prediction will be named, Sm.
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Overall Marginal Survival 2

• Here, standsurv will take the average of 24,883 predicted survival
functions.

• Later in the course we will use the at() options to force covariates to take
specific values.

. sts graph, noshow plotopts(lwidth(*3) lcolor(%60)) legend(on) ///
> note("Graph code in ${dofile}", size(vsmall) span color(gs3%50))
. frame msurv: addplot: line Sm tt, lcolor(%100) ///
> legend(order(1 "Kaplan-Meier" 2 "Model based"))
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Overall Marginal Survival 3
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• Agreement, so good it is hard to see differences in lines.
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Marginal predictions using stpm3km

• Often the marginal estimate will be similar to the Kaplan-Meier estimate,
even when the model is poor.

• It can be more usful to compare marginal model estimates and Kaplan-Meier
estimates in subgroups.

• These subgroups could be based on a prognostic index, or a covariate in (or
not in) the model.

• Thus with 5 groups, 5 separate Kaplan-Meier estimates are calculated and
the marginal survival is calculated separately in each group.

• The stpm3km command makes this easy. stpm3km runs the standsurv
command.
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Marginal predictions using stpm3km 2

• The stpm3km command essentially calls standsurv with the following,
standsurv if varname==1, ...

standsurv if varname==2, ...
...

• An alternative way to do this is to use the over option. standsurv , surv

over(varname) ...

• The key point is the averages are taken within groups.

• Note that that we will use standsurv to average over the same covariate
distribution later. Using the over() option or using if statements in this
way should not be used in that situation as we are averaging over
different covariate distributions.
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Simple use of stpm3km: prognostic index

. stpm3km
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• Not bad, but some disagreement.
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Simple use of stpm3km: age groups

. stpm3km agediag, groups(4)
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Simple use of stpm3km: age groups 2

• Here, we are modelling age continuously, but takeing average of predictions
within age groups.

• The model makes assumptions (e.g. proportional hazards) and if those
assumptions are unrealistic we may get a poor fit.

• Not that bad here. We will do better later when we relax the linearity and
proportional hazards assumptions.

• Note we are modelling age continously, but assessing within age groups, we
could define different age groups if we wanted.
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Some comments on marginal predictions

• This is a very simple example of marginal predictions.

• The key point is we often want to report average effects to summarise
survival or differences in survival - we need to think about the population we
are averaging over.

• We use the standsurv command for many reasons during the course.

• This will include,

Population and subgroup summaries
Age (and other covariate) standardization
Assessment of model fit
Obtaining descriptive contrasts
Obtaining causal contrasts
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Some comments on predictions

• We usually prefer saving results to a frame. This separates the analysis data
from predictions.

• We nearly always specify the times we want to predict using timevar,
rather than t

• The rows in the frame are usually less than the analysis data.

• We can predict for various combinations of covariates using multiple at()
options.

We will run through Example 1 now.
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Flexible parametric models: contrasts
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Contrasts

• Rather than just predicting one overall measure, we are usually interested in
contrasts between different subgroups.

• For example, comparisons betweeen

Different countries.
Males and females.
New vs standard treatment.

• We can predict for various combinations of covariates using at() options.

• We can obtain contrasts between conditional predictions using predict and
marginal predictions using standsurv.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 84



Model used to illustrate contrasts

• We fit the following simple model.

. stpm3 i.dep agediag, scale(lncumhazard) df(5) eform nolog neq(1)
Number of obs = 24,883
Wald chi2(5) = 148.15

Log likelihood = -22455.915 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep
2 1.046464 .0353249 1.35 0.178 .9794686 1.118041
3 1.098292 .0380768 2.70 0.007 1.026142 1.175515
4 1.203149 .0434151 5.13 0.000 1.120996 1.291322

mostdep 1.290682 .0506453 6.50 0.000 1.19514 1.393862

agediag .9813256 .0020177 -9.17 0.000 .9773788 .9852882

Note: Estimates are transformed only in the first equation.

• Note neq(1) only shows the first equation (i.e. the spline parameters are
not displayed)
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Differences in survival functions

. predict S40_dep1 S40_dep5, survival ci frame(survpred, replace) ///
> timevar(0 5, step(0.1)) ///
> at1(dep 1 agediag 40) at2(dep 5 agediag 40) ///
> contrast(difference) contrastvar(Sdiff)
Predictions are stored in frame - survpred

• We have specified that we want to calculate a difference using
contrast(difference).

• As we are predicting survival, this will be a difference in survival functions.

• at1 is the reference, i.e. we calculate at2-at1. This can be changed with
the atref(#) option.

• With K at options there will be K − 1 contrasts.

• The difference (with CIs) will be saved as Sdiff (Sdiff lci,Sdiff uci).
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Survival curves to compare
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Differences in survival functions: graph
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Ratio of failure functions

• We can also take ratios when performing contrasts.

• This is most common for hazard ratios that change over time, but here we
will take ratios of probabilities, i.e relative risk rather than a relative rate.

• Let F (t) = 1− S(t) be the probability of death by time t. We can calculate

a relative risk F (t|x=1)
F (t|x=0)

• Note this is a function of time.

. predict F40_dep1 F40_dep5, failure ci frame(Fpred, replace) ///
> timevar(0 5, step(0.1)) ///
> at1(dep 1 agediag 40) at2(dep 5 agediag 40) ///
> contrast(ratio) contrastvar(Fdiff)
Predictions are stored in frame - Fpred
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Ratio of failure functions: graph
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Difference in hazard functions

. predict h40_dep1 h40_dep5, hazard ci frame(hazpred, replace) per(1000) ///
> timevar(0.1 5, step(0.1)) ///
> at1(dep 1 agediag 40) ///
> at2(dep 5 agediag 40) ///
> contrast(difference) contrastvar(hd40_dep)
Predictions are stored in frame - hazpred

• The prediction will give how many more deaths (per 1000py) we expect in
the most deprived women aged 40 compared to least deprived women aged
40.

• We could use contrast(ratio) to get a hazard ratio, but this is a
proportional hazards model and so this would just be a horizontal line at
1.29.
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Difference in hazard functions: Graph
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How well do splines approximate the hazard?[11]

Journal of Statistical Computation and Simulation, 2013

http://dx.doi.org/10.1080/00949655.2013.845890

The use of restricted cubic splines to approximate complex

hazard functions in the analysis of time-to-event data:

a simulation study

Mark J. Rutherforda∗, Michael J. Crowthera and Paul C. Lamberta,b

• We do not believe the spline function is the true model, but provides a very
good approximation.

• We assessed this in a simulation study.
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Simulation Study (Rutherford et al.)

• Want to assess how well splines approximate the true function.

• Generate data assuming a mixture Weibull distribution,

S(t) = π exp(−λ1t
γ1) + (1− π) exp(−λ2t

γ2)

We will run a simplified version of this simulation study in Example 2
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Flexible Parametric Survival Models: non-linear

functions

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 95



Non-linear functions

• Generally better to model continuous covariates rather than categorise[12].

• However, this raises problems of choosing an appropriate functional form.

• Effects are rarely perfectly linear.

• For example, often a ‘U’ or ‘J’ shaped curve for the effect of age.

• Non-linear effects can be modelled in various ways, for example using
polynomials, splines or fractional polynomials[13].

• Models appear complex, but we can still report results in a simple way.

• I will use the England breast North West data as an example.

• I restrict analysis to the least and most deprived groups.
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Assuming linearity

. use breast_nw if inlist(dep,1,5)
(Ch28 Adult Breast 174, 175)
. stset survtime, failure(dead==1) exit(time 5)

(output omitted )
. stpm3 i.dep agediag, scale(lncumhazard) df(5) eform nolog neq(1)

Number of obs = 6,242
Wald chi2(2) = 604.18

Log likelihood = -8074.6607 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep 1.266583 .0486285 6.16 0.000 1.174771 1.365571
agediag 1.034256 .0015005 23.22 0.000 1.031319 1.037201

Note: Estimates are transformed only in the first equation.
. estimate store linear

• This is a proportional hazards model.

• There is a 3.4% increase in the mortality rate for each yearly increase in age.

• This 3.4% increase is assumed to be the same for any age.
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Assuming linearity 2

• This 3.4% is assumed to be the same at all follow-up times (because we are
assuming proportional hazards).

• But, is linearity a reasonable assumption? For many cancers there is a ‘U’
shaped relationship with age.
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Marginal predictions within age groups

. stpm3km i.agegrp, legoptions(pos(7))
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• Very poor fit.
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Quadratic function for age

• We relax the assumption of linearity by including a quadratic term for age.

. gen agediag2 = agediag^2

. stpm3 i.dep agediag agediag2, scale(lncumhazard) df(5) eform nolog neq(1)
Number of obs = 6,242
Wald chi2(3) = 910.20

Log likelihood = -7998.9853 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep 1.283202 .0492616 6.50 0.000 1.190194 1.383478
agediag .9128108 .0087122 -9.56 0.000 .8958939 .9300471

agediag2 1.000972 .0000741 13.13 0.000 1.000827 1.001118

Note: Estimates are transformed only in the first equation.
. estimate store quad1
. predict S60dep5, surv ci frame(f1, replace) ///
> at1(dep 5 agediag 60 agediag2 3600)
Predictions are stored in frame - f1

• The individual age coefficients are difficult to interpret.
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Quadratic function for age 2

• Predictions can get awkward. To predict for a 60 year old, we have to
calculate the value of the agediag2 term for a 60 year old (i.e 3600).

• With many covariates, more complex functions, interactions this is prone to
error.

• stpm3 has extended functions that allow the user to specify the function in
the command itself. This makes predictions much easier.
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Extended functions

• Extended functions allow you to include non-linear and more general
functions when you specify the model.

• This makes predictions for complex non-linear effect with potential
interactions much easier.

• The details of the non-linear function (e.g. knots for splines) are saved with
the model.

• The current extended functions in stpm3 are

@bs() - B-splines
@fn() - general functions
@fp() - fractional polynomials
@ns() - natural cubic splines
@poly() - polynomials
@rcs() - restricted cubic splines
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Extended functions 2

• These can be incorporated as both main and time-dependent effects.

• See the help file for details of syntax.
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Quadratic function for age: extended function

. stpm3 i.dep @poly(agediag,degree(2)), scale(lncumhazard) df(5) eform nolog neq(1)
Number of obs = 6,242
Wald chi2(3) = 910.20

Log likelihood = -7998.9853 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep 1.283202 .0492616 6.50 0.000 1.190194 1.383478
_poly_f1_agediag1 .9128108 .0087122 -9.56 0.000 .8958939 .9300471
_poly_f1_agediag2 1.000972 .0000741 13.13 0.000 1.000827 1.001118

Note: Estimates are transformed only in the first equation.
Extended functions
(1) @poly(agediag, degree(2))

. estimate store quad2

. predict S60dep5, surv ci frame(f1, replace) ///
> at1(dep 5 agediag 60)
Predictions are stored in frame - f1

• The extended function is used directly in the varlist.

• stpm3 has created new variables.
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Quadratic function for age: extended function 2

• For the predict command we only need to know the age we want to
predict at.

• This is a big advantage in more complex models.
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Quadratic function for age: compare coeficients

. estimate tab quad1 quad2

Variable quad1 quad2

xb
dep

mostdep .24935823 .24935823

agediag -.09122665
agediag2 .00097182

_poly_f1_a~1 -.09122665

_poly_f1_a~2 .00097182

time
_ns1 -15.900347 -15.900347
_ns2 4.121899 4.121899
_ns3 -1.3906653 -1.3906653
_ns4 -.70938006 -.70938006
_ns5 -.4341717 -.4341717

_cons 1.0303667 1.0303667

• Coefficients are identical.
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Natural spline function for age

• We generally prefer splines functions. Here the @ns() extended function is
used.

. stpm3 i.dep @ns(agediag,df(3)), scale(lncumhazard) df(5) eform nolog neq(1)
Number of obs = 6,242
Wald chi2(4) = 919.95

Log likelihood = -7998.7223 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep 1.287756 .0495411 6.57 0.000 1.194227 1.388609
_ns_f1_agediag1 .001194 .0008423 -9.54 0.000 .0002996 .0047584
_ns_f1_agediag2 .5379266 .1906011 -1.75 0.080 .268609 1.077272
_ns_f1_agediag3 .0548944 .012089 -13.18 0.000 .0356511 .0845244

Note: Estimates are transformed only in the first equation.
Extended functions
(1) @ns(agediag, df(3))

. predict S60dep5, surv ci frame(f1, replace) ///
> at1(dep 5 agediag 60)
Predictions are stored in frame - f1
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Natural spline function for age 2

• stpm3 has created new variables.

• Importantly, the predict command does not change from the polynomial
model. We just need to think about the values of age and deprivation group
we want to predict for.

• In the above code the predict command will calculate the relevant natural
spline variables for a 60 year old.

• Irrespective of the extended function we use, the predict command will
stay the same. This is true even when you have interactions and/or
time-dependent effects.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 108



Hazard ratio for non-linear function

• When quantify the non-linear function in terms of a hazard ratio, we need to
specify a reference age.

• Similar to us setting a reference group with categorical variables.

. frame create agepred

. frame agepred {

. range agediag 18 99 82
Number of observations (_N) was 0, now 82.
. gen dep = .
(82 missing values generated)
. gen t1 = 1
. predict h_dep1 h_dep5, hazard ci timevar(t1) merge ///
> at1(dep 1 agediag 60) at2(dep 1, obsvalues) ///
> contrast(ratio) contrastvar(hr)
. }
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Hazard ratio as a function of age
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Non-linear functions with interactions

. stpm3 i.dep##@ns(agediag,df(3)), scale(lncumhazard) df(5) eform nolog neq(1) vsquish
Number of obs = 6,242
Wald chi2(7) = 922.33

Log likelihood = -7987.6138 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep .749069 .1537846 -1.41 0.159 .500921 1.120145
_ns_f1_agediag1 .0020386 .0020793 -6.07 0.000 .0002761 .0150503
_ns_f1_agediag2 .1990167 .1051681 -3.05 0.002 .070645 .5606573
_ns_f1_agediag3 .0368143 .0115166 -10.55 0.000 .0199405 .0679669

dep#c._ns_f1_agediag1
mostdep .4840744 .683222 -0.51 0.607 .0304458 7.696564

dep#c._ns_f1_agediag2
mostdep 5.343581 3.816513 2.35 0.019 1.317904 21.66611

dep#c._ns_f1_agediag3
mostdep 2.137918 .9350963 1.74 0.082 .9071666 5.038428

Note: Estimates are transformed only in the first equation.
Extended functions
(1) @ns(agediag, df(3))

. predict S60dep5, surv ci frame(f1, replace) ///
> at1(dep 5 agediag 60)
Predictions are stored in frame - f1
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Non-linear functions with interactions 2

• By fitting an interaction between deprivation and age there is now a
differernt non-linear function for the least and most deprived groups.

• Using the ## notation will fit the main effects and the interaction.

• Using the # notation will just fit the interaction.

• As before the predict command does not change. This greatly simplifies
how we can predict from complex models.
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Models with interactions
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Interactions

• It is easy to add interactions to any model. The challenge is in quantifying
what that interactions means.

• Sometimes our research question means that it is necessary to incorporate
an interaction, e.g. Improvements in survival over calendar time are greater
for for females than males.

• Sometimes we want to fit an interaction to model the complexity in our
data, but are not interested in quantifying that interaction, e.g. we want our
model to allow a differential effect of age for males and females, because we
beleive it exists, but are only intersted in marginal differences in survival.

• I will fit a simple model using the Breast North West England data restricted
to the least and most deprived to show some examples.
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Main effects model

• We start with a main effects model

. stpm3 @ns(agediag,df(3)) i.dep, scale(lncumhazard) df(4) nolog neq(1)
Number of obs = 6,242
Wald chi2(4) = 919.44

Log likelihood = -8008.3369 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
_ns_f1_agediag1 -6.731391 .7054777 -9.54 0.000 -8.114101 -5.34868
_ns_f1_agediag2 -.6183224 .3543468 -1.74 0.081 -1.312829 .0761844
_ns_f1_agediag3 -2.902752 .2202527 -13.18 0.000 -3.33444 -2.471065

dep
mostdep .2530977 .038471 6.58 0.000 .177696 .3284994

Extended functions
(1) @ns(agediag, df(3))

. estimates store main

• We can interpret the effect of dep (it is a log hazard ratio).
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Now with an interaction

. stpm3 @ns(agediag,df(3))##i.dep, scale(lncumhazard) df(4) nolog neq(1) vsquish
Number of obs = 6,242
Wald chi2(7) = 921.73

Log likelihood = -7997.2579 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
_ns_f1_agediag1 -6.189548 1.020047 -6.07 0.000 -8.188803 -4.190294
_ns_f1_agediag2 -1.61466 .5284833 -3.06 0.002 -2.650468 -.5788519
_ns_f1_agediag3 -3.299452 .3128195 -10.55 0.000 -3.912567 -2.686337

dep
mostdep -.2864709 .2053254 -1.40 0.163 -.6889013 .1159594

dep#c._ns_f1_agediag1
mostdep -.7368452 1.411549 -0.52 0.602 -3.50343 2.02974

dep#c._ns_f1_agediag2
mostdep 1.679111 .7142818 2.35 0.019 .2791448 3.079078

dep#c._ns_f1_agediag3
mostdep .7551497 .43744 1.73 0.084 -.102217 1.612516

Extended functions
(1) @ns(agediag, df(3))

. estimates store inter

• None of the parameters have a useful interpretion alone.
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Likelihood ratio test

• Likelihood ratio test indicates differential effect of age for the least and most
deprived, i.e. the effect of deprivation varies by age.

. lrtest main inter
Likelihood-ratio test
Assumption: main nested within inter
LR chi2(3) = 22.16

Prob > chi2 = 0.0001

• We have used natural splines for age, so now we need to
understand/quantify the interaction.
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Compare survival for selected ages

• Predict for 30, 50 and 70 year old women in the least deprived group.

. estimates restore main
(results main are active now)
. predict h30m h50m h70m, surv ci timevar(0 5,step(0.1)) ///
> frame(haz, replace) ///
> at1(agediag 30 dep 1) at2(agediag 50 dep 1) ///
> at3(agediag 70 dep 1)
Predictions are stored in frame - haz
. estimate restore inter
(results inter are active now)
. predict h30i h50i h70i, surv ci ///
> frame(haz, merge) ///
> at1(agediag 30 dep 1) at2(agediag 50 dep 1) ///
> at3(agediag 70 dep 1)
Predictions are stored in frame - haz

• Note that the prediction command is identical for the main effects and
interaction model (except we are now merging to a frame).

• As a user you need to state the covariates you want a prediction for, stpm3
will take care of dealing with interactions, non-linear effects, time-dependent
effects etc.
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Compare survival for selected ages (least deprived group)
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• Larger difference (and opposite direction) for younger women.
• Useful to look at these plots: in large datasets significant interaction may
lead to small differences in survival.
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Hazard ratio for deprivation as function of age

• With an interaction the hazard ratio for deprivation will be a function of age.
• First create a frame with the ages you want to predict at.

. frame create ageHR

. frame ageHR {

. range agediag 30 80 51
Number of observations (_N) was 0, now 51.
. gen dep = .
(51 missing values generated)
. predict h1 h5, hazard timevar(1) ci merge ///
> at1(dep 1, obsvalues) ///
> at2(dep 5, obsvalues) ///
> contrast(ratio) contrastvar(hr)
. }

• We specify the timevar() option, but the hazard ratio will not vary by
time, so we can use any time. timevar(1), timevar(2), timevar(7)
would give identical results as we are assuming proportional hazards.

• We use the obsvalues suboption as we want to predict at the created
values of agediag.
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Hazard ratio for deprivation as function of age
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• Dashed line shows hazard ratio from main effects model.
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Hazard ratio for age - by deprivation group

• With an interaction the hazard ratio function for age will be different for
each deprivation group.

• We can use the same frame as before.

• I will use age 60 as the reference age.

. frame ageHR {

. predict, hazard timevar(tt) ci merge nogen ///
> at1(agediag 60 dep 1) at2(dep 1, obsvalues) ///
> contrast(ratio) contrastvar(hr_dep1)
.
. predict, hazard timevar(tt) ci merge nogen ///
> at1(agediag 60 dep 5) at2(dep 5, obsvalues) ///
> contrast(ratio) contrastvar(hr_dep5)
. }

• Remember at1() is the reference (denominator) by default.
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Hazard ratio for age - by deprivation group
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• Slighly more dramatic effect of age for least deprived group.
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Impact on marginal survival and differences

• We can explore impact of the interaction on marginal survival and the
survival difference.

. range tt 0 5 101
(6,141 missing values generated)
. estimates restore main
(results main are active now)
. standsurv S1m S5m, surv timevar(tt) ci frame(surv, replace) ///
> at1(dep 1) at2(dep 5) ///
> contrast(difference) contrastvar(Sdiff_m)
.
. estimates restore inter
(results inter are active now)
. standsurv S1i S5i, surv ci frame(surv, merge) ///
> at1(dep 1) at2(dep 5) ///
> contrast(difference) contrastvar(Sdiff_i)
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Impact on marginal survival and differences
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• Not huge, but about 1 percentage point difference at 5 years.
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Sensitivity to knots

I will run Exercise 3, rather than the slides for this section

• When using splines it is important to ask if the fitted values are sensitive to
the number and the location of the knots.

• Too many knots will overfit with local ‘humps and bumps’.

• Too few knots will underfit.

• In most situations the exact choice of knots is not crucial.

• We can use the AIC and BIC to help us select how many knots to use, but a
simple sensitivity analysis is recommended.
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How many knots?

• An obvious question is how many knots to use?

• In proportional hazard models, the number of knots is generally not that
important when interest only lies in estimation of hazard ratios.

• The models are (usually) not nested and models can be compared using the
AIC or the BIC where.

AIC = −2 ln L+ 2p BIC = −2 ln L+ ln(N)p

• The AIC and BIC differ in terms of the penalty function applied to the
number of parameters (p).

• Note that in survival data, N is usually taken to be the number of events.

• Selecting the number of knots in these models is an area where more
research is needed. However, it is very unlikely that you will change your
conclusions by including some extra knots.
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Use loops when doing sensitivity analysis

forvalues i = 1/10 {
stpm3 i.dep, scale(lncumhazard) df(`i´)
estimates store df`i´
predict h`i´, hazard zeros timevar(0 5, step(0.1)) per(1000) frame(hpred, mergecreate)
predict S`i´, surv zeros timevar(0 5, step(0.1)) frame(spred, mergecreate)

}

• The frame(hpred, mergecreate) option creates frame hpred if it does
not exist, otherwise it will merge predictions into frame hpred and ignore
the timevar() option.
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Example of different knots for baseline hazard
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Example of different knots for baseline survival
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Effect of number of knots on hazard ratios

. estimates table df1 df3 df5 df7 df9, keep(2.dep 3.dep 4.dep 5.dep) eform se

Variable df1 df3 df5 df7 df9

dep
2 1.0492382 1.0490249 1.0489889 1.0489795 1.0489547

.03541747 .03541028 .03540907 .03540875 .03540792
3 1.1054619 1.1052441 1.1052453 1.1052494 1.1052519

.03831642 .03830887 .03830891 .03830906 .03830914
4 1.2144316 1.2129807 1.2130224 1.2130376 1.2130374

.04380552 .04375326 .04375476 .04375532 .04375531
mostdep 1.310615 1.3100448 1.3098038 1.3098032 1.3097919

.05137581 .05135347 .05134406 .05134403 .05134359

Legend: b/se

• Very similar estimates of hazard ratios and standard errors.

• Even for df = 1 or df = 2.
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Where to place the knots?

• The default knots positions tend to work fairly well.

• Unless the knots are in silly places then there is usually very little difference
in the fitted values.

• The graphs on the following page shows for 5 df (4 interior knots) the fitted
hazard and survival functions with the interior knot locations randomly
selected.
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Random knot positions for baseline hazard
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Effect of location of knots on baseline survival
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Flexible parametric models: time-dependent effects
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Time-dependent effects

• When the relative effect of a covariate varies over follow-up time, then we
no longer have proportional hazards. In other words the effect of the
covariate is time-dependent.

• Note that this is different to a time-dependent covariate, where the value of
a covariate can change over follow-up time

• One way of fitting a model with non-proportional hazards is to fit the model
on an alternative scale. E.g. in a proportional odds models the hazard rates
are forced to converge as follow-up time increases.

• FPMs include the effect of time as covariates in the linear predictor, so
time-dependent effects can be included by fitting interactions between the
covariate of interest and the covariates defining the effect of time.
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Time-dependent effects 2

• Time-dependent effects can be estimated in a piecewise fashion by
categorization of time scale or in continuous time using splines.

• The fitting is the easy part - need to think about why the effect is
time-dependent. Is it a true causal effect? Is it due to unobserved frailty?
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Rate of Metastasis by Estrogen receptor status[14]

First distant metastasis by age group First distant metastasis by ER status
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Excess Mortality Ratios for breast cancer (England vs Norway)

1

2

3

0 2 4 6 8

Age 35

1

2

3

0 2 4 6 8

Age 45

1

2

3

0 2 4 6 8

Age 55

1

2

3

0 2 4 6 8

Age 65

1

2

3

0 2 4 6 8

Age 75

1

2

3

0 2 4 6 8

Age 85

E
xc

es
s 

M
or

ta
lit

y 
R

at
e 

R
at

io

Years from Diagnosis

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 139



Non-proportional hazards

Proportional hazards

hi(t|xi) = h0(t) exp (xiβ)

• Alternatively on the log scale.

ln [hi(t|xi)] = ln [h0(t)] + xiβ

• The log hazard ratio, β is a single value, assumed to be the same
throughout follow-up.

• For non-proportional hazards, the log hazard ratio is a function of time.

• This could be a step function, a linear function of time (or log time), or a
spline function.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 140



Time-dependent effects

• A proportional cumulative hazards model can be written

ln [Hi(t|xi)] = ηi(t) = s (ln(t)|γ, k0) + xiβ

• We introduce is a new set of spline variables for each time-dependent effect.

• If there are D time-dependent effects then

ln [Hi(t|xi)] = s (ln(t)|γ, k0) +
D∑
j=1

s (ln(t)|δj , kj)xij + xiβ

• The number of spline variables for a particular time-dependent effect will
depend on the number of knots, kj
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Time-dependent effects 2

• For any time-dependent effect there is an interaction between the covariate
and the spline variables.

• The model is allowing for non-proportional cumulative hazards, but as we
can estimate a hazard function for any covariate combination, we can take
the ratio, between two (or more) different covariate combinations.
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stpm3 and Time-Dependent Effects

• Non-proportional effects can be fitted by use of the tvc() and dftvc()

options.

. stpm3 i.dep, scale(lncumhazard) df(5) tvc(i.dep) dftvc(3)

• There is no need to split the time-scale when fitting time-dependent effects.

• When time-dependence is a linear function of ln(t) and N = 100, 000, 50%
censored and no ties.

stcox using tvc() texp(ln( t)) - 43 minutes, 6 seconds.
stpm3 using dftvc(1) - 0 minutes, 1.1 seconds.
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Using the tvc() and dftvc() options

. use breast_EW50 if agediag<=50 & inlist(dep,1,5)
(Ch28 Adult Breast 174, 175)
. stset survtime, failure(dead==1) exit(time 5)

(output omitted )
. stpm3 i.dep, scale(lncumhazard) df(5) tvc(i.dep) dftvc(3) ///
> eform nolog vsquish

Number of obs = 9,719
Wald chi2(1) = 40.80

Log likelihood = -8750.6755 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep 1.286488 .0507348 6.39 0.000 1.190795 1.38987

time
_ns1 -20.82268 1.513862 -13.75 0.000 -23.78979 -17.85556
_ns2 3.824477 .786076 4.87 0.000 2.283796 5.365157
_ns3 -1.156724 .0349299 -33.12 0.000 -1.225186 -1.088263
_ns4 -.6240747 .0245301 -25.44 0.000 -.6721529 -.5759965
_ns5 -.3733175 .0209403 -17.83 0.000 -.4143598 -.3322752

dep#c._ns_tvc1
mostdep 1.895422 2.089921 0.91 0.364 -2.200747 5.991592

dep#c._ns_tvc2
mostdep -.1955392 1.109001 -0.18 0.860 -2.36914 1.978062

dep#c._ns_tvc3
mostdep .1387845 .0481613 2.88 0.004 .04439 .233179

_cons -1.14041 .0234124 -48.71 0.000 -1.186297 -1.094522

Note: Estimates are transformed only in the first equation.
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Comments on model/output

• Data reduced to least and most deprived groups (inlist(dep,1,5)).
• stpm3 has formed an interaction between deprivation and some newly
created spline variables.

. list dep _t 5.dep#c.(_ns_tvc*) in 1/7,noobs

5.dep# 5.dep# 5.dep#
dep _t c._ns_t~1 c._ns_t~2 c._ns_tvc3

leastdep 5 0 0 0
leastdep 1.191 0 0 0
mostdep 1.673 .06921045 .13859791 .60150914

leastdep 5 0 0 0
leastdep 5 0 0 0

leastdep 4.0110002 0 0 0
mostdep 5 0 0 -.00080274

• I have shown the parameters estimates, but now none of them have a useful
interpretation individually. However, by combining them we get predictions
of hazard/survival functions etc.
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Predictions

• The predict command will automatically incorprate any time dependent
effects.

• This means that the predict syntax is identical whether there is a time
dependent effect of not.

Predict hazard functions
. predict h0tvc h5tvc, hazard frame(hpred, replace) per(1000) ci ///

> timevar(0 5, step(0.025)) ///
> at1(dep 1) at2(dep 5) ///
> contrast(ratio) contrastvar(hr)
Predictions are stored in frame - hpred

• The hazard ratio will now be a function of time. We can predict this using
the contrast(ratio) option.
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Non-proportional hazards
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Hazard ratio is a function of time
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Comments on fitting non-proportional hazards

• I have used 3 df to model the time-dependent effect of deprivation group.

• We are modelling the difference between the baseline and deprivation group
5. We often need fewer df for departures from the baseline than for the
baseline itself. In a PH model the difference is a single value - the (log)
hazard ratio.

• As we are modelling on the log cumulative hazard scale, the time-dependent
hazard ratio may not be constant over other covariates that are also
time-dependent. This is not the case for models on the log hazard scale.

• We report hazard ratios less often than we used to. However, most of the
models we fit allow for non-proportional hazards.

• As always, it may be useful to perform a sensitivity analysis to the choice of
df for time-dependent effects.
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Hazard ratio: Sensitivity to knots
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Hazard ratio: Comments

• We (like others) present hazard ratios (with or without time-dependent
effects) far less than we used too.

• Most of the models we fit incorporate time-dependent effects as the type of
data we see rarely has proportional hazards.

• However, we choose to present more interpretable/understandable metrics.

Differences in marginal survival
Differences in restricted mean survival time
‘Avoidable’ deaths
Differences in life expectancy
Reference adjusted measures

• We obtain better estimates of the above if we allow for non-proportional
hazards.
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Flexible Parametric Models: Marginal contrasts
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Marginal measures and contrasts

• When analysing time-to-event data, it is often of interest to compare the
prognosis of one population group to another e.g. 5-year survival of least
deprived vs most deprived groups.

• It is common to fit a regression model, usually a Cox model, to adjust for
several confounders.

• The most common reported parameter is an adjusted hazard ratio. But how
informative is this?
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Some thoughts on hazard ratios (HRs)

• Despite the popularity and broad use of HRs, these are often misinterpreted
as relative risks [3, 4, 5, 6].

The relative risk is the ratio of the probability of experiencing the event by a
specific time for the exposed to the probability for the unexposed.
The HR for an exposure is defined as the ratio of the hazard rates for the
exposed and unexposed.

• Time-dependent HRs can be obtained but they are overlooked and a single
HR is estimated for the whole study follow-up - can be an unrealistic
assumption e.g. the effect of a treatment may lose effectiveness over time.
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More thoughts on hazard ratios

• HRs are conditional on those who have survived up to a particular time.
Even after adjusting for confounders at baseline, there may be emerging
differences between survivors with time, resulting in an imbalanced
comparison between exposure groups (built-in selection bias).

• Moreover, the HR is a relative measure, making it difficult to understand
whether this effect is clinically meaningful. Absolute measures can be more
informative than relative measures.

• It has an informative interpretation in terms of risk (that is more often the
quantity of interest).
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Marginal Contrasts

• standsurv has similar contrast() and contrastvar() options to
stpm3’s predict command.

• We are now comparing marginal survival (and other) functions.

• When making contrasts we usually want to average over the same covariate
distribution.

• These covariates may be confounders and thus we are averaging over the
same confounder distribution,

• For confounders, Z , we can write this as,

E [S(t|X = 1,Z )]− E [S(t|X = 0,Z )]

• The key point is that this is the expectation (average) over the same
covariate distribution, Z .
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Estimation

• Fit a survival model for exposure X and confounders Z .
• Estimation of a marginal survival function is based on predicting a survival
function for each individual and taking an average.

1

N

N∑
i=1

Ŝ (t|X = 1,Z = zi)−
1

N

N∑
i=1

Ŝ (t|X = 0,Z = zi)

• Force everyone to be exposed and then unexposed.
• We use their observed covariate pattern, zi .
• Epidemiologists call this model based or regression standardization[15].
• Also know as marginal effect or G-computation / G-formula.
• Can restrict to a subset of the population, e.g. the average causal effect in
the exposed.

• We will go over more details of this later.
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Differences in survival functions

. standsurv, survival ci timevar(tt) frame(msdiff, replace) ///
> at1(dep 1) at2(dep 5) ///
> atvar(S1 S5) ///
> contrast(difference) ///
> contrastvar(Sdiff)

• at1(dep 1) forces all individuals to have dep=1.

• Need to be careful with (separate) if statements for the at() options as it
is important to average over the same population.

• A single if statements will average over the same sub-population.

• Not sensible to use the over() option.

• Do not have expect to agree with Kaplan-Meier estimates as we are
assigning individuals to covariate patterns they do not have.
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Standardized survival functions
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Difference in standardized survival functions
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Difference in standardized survival functions
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Restricted mean survival time (RMST)

• An alternative measure to quantify survival is restricted mean survival where
the mean is calculated up to time t∗.

• This is the area under the survival curve up to t, so we can obtain using
(numeric) integration.

Restricted mean survival is 2.76 years
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Restricted mean survival time (RMST)

restricted mean survival time

RMST (t∗) = E [min(T , t∗)]

RMSTs(t
∗|X = x ,Z ) =

∫ t∗

0

E [S(t|X = x ,Z )]

and is estimated by

R̂MST s(t
∗|X = x ,Z ) =

∫ t∗

0

1

N

N∑
i=1

S(t|X = x ,Z = zi)

• we can then take differences or ratios.

• Various authors suggest a better causal effect than HR[6]
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RMST example

. gen t5 = 5 in 1
(24,882 missing values generated)
. standsurv, rmst ci timevar(t5) ///
> frame(rmst, replace) ///
> at1(dep 1) at2(dep 5) ///
> atvar(rmst1 rmst5) ///
> contrast(difference) ///
> contrastvar(rmstdiff)

• Just use rmst option - the rest of the code is the same.

• I choose to estimate at a single time point.
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RMST output

. frame rmst: list rmst1* rmst5*, noobs

rmst1 rmst1_lci rmst1_uci rmst5 rmst5_lci rmst5_uci

4.2725531 4.2421609 4.3031631 4.0895111 4.0404619 4.1391558

. frame rmst: list rmstdiff*, noobs

rmstdiff rmstdi~lci rmstdi~uci

-.18304201 -.24009462 -.12598939

• A difference of 0.18 years over the first 5 years after diagnosis.
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Causal effects?

• Are we estimating causal effects?

• If we believe the cofounders are sufficient for confounding control (and we
have modelled them appropriately), then yes.

• We are using regression standardization, or applying the G-formula.

• We meed to make additional assumptions (consistency, positivity,
well-defined interventions) [15].

• However, we use standardization all the time is descriptive epidemiology, we
want to standardize over age/sex and other covariate distributions.

• The code/maths is the same, but to infer causality we have to make lots of
untestable assumptions.

I will run Example 4, so clarify what standsurv is doing.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 166



Different populations to standardize over

• When we use standsurv the default is to standardize (average) over the
covariate distribution in memory.

• Covariates that are no included in the model do not impact the estimate.

• We can restrict the population we standardize over using an if statement or
by using the atif() suboption within any at option.

• We do not need to use the same data we fitted the model to. This can be
useful for external validation of a prognostic model or when models have to
be fitted separately as data sources can’t be combined.

• Sometimes we standardize as we want to make fair comparisons between
groups and sometimes we standardize as we want the average survival in a
specific group (perhaps for assessment of model fit).

• The next few slides go through different syntax of standsurv to illusrate
some of these issues.
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Model to illustrate standardization issues

. stpm3 i.hormon @ns(age,df(3)) @fn(exp(-0.12 * nodes),stub(enodes)), ///
> scale(lncumhazard) df(4) nolog neq(1)

Number of obs = 2,982
Wald chi2(5) = 624.29

Log likelihood = -2670.2995 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
hormon

yes -.1270688 .0910185 -1.40 0.163 -.3054619 .0513242
_ns_f1_age1 -3.226227 .9001483 -3.58 0.000 -4.990485 -1.461968
_ns_f1_age2 -.8273933 .3834533 -2.16 0.031 -1.578948 -.0758386
_ns_f1_age3 -2.285906 .3964405 -5.77 0.000 -3.062915 -1.508897
_fn_enodes -2.189403 .0979397 -22.35 0.000 -2.381362 -1.997445

Extended functions
(1) @ns(age, df(3))
(2) @fn(exp(-0.12 * nodes), stub(enodes))

• The research question of interest is to compare the effect of receiving
hormonal therapy vs no receiving hormonal therapy.

• We (naively) assume that including age and nodes is sufficent for
confounding control and we are thus able to estimate causal effects.
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Averaging over the full study population

. standsurv, surv ci timevar(tt) frame(f1, replace) ///
> at1(hormon 0) at2(hormon 1) atvar(S0 S1) ///
> contrast(difference) contrastvar(Sdiff)
. frame f1: list tt S0 S1 Sdiff if tt == 10, noobs

tt S0 S1 Sdiff

10 .54911641 .58422915 .03511274

• We are averaging over the combined covariate distribution, so do not expect
these marginal curves to agree with the Kaplan-Meier estimates.

• There are more in the untreated group, so expect the marginal curves to be
closer to this group.

. dtable age nodes, by(hormon, nototal) cont(, stat(mean)) sample(,stat(freq))

Hormonal therapy
no yes

N 2,643 339
age at surgery 54.098 62.549
Number of positive nodes (nrpos) 2.327 5.720
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Averaging over the full study population
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Averaging over the untreated

. standsurv if hormon==0, surv ci timevar(tt) frame(f2, replace) ///
> at1(hormon 0) at2(hormon 1) atvar(S0 S1) ///
> contrast(difference) contrastvar(Sdiff)
. frame f2: list tt S0 S1 Sdiff if tt == 10, noobs

tt S0 S1 Sdiff

10 .57092317 .60552487 .03460171

• We are averaging over the covariate distribution of the untreated. We would
expect that the model based and Kaplan-Meier curves for the untreated
should be similar if the model is reasonable.

• We are forcing the covariate distribution of the treated to be less severe
than observed.

• We are estimating how much the survival would improve if the untreated
were treated (under assumptions!).
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Averaging over the untreated 2

• We can estimate the above using different syntax.

. standsurv, surv ci timevar(tt) frame(f3, replace) ///
> at1(hormon 0, atif(hormon==0)) at2(hormon 1, atif(hormon==0)) ///
> atvar(S0 S1) ///
> contrast(difference) contrastvar(Sdiff)
. frame f2: list tt S0 S1 Sdiff if tt == 10, noobs

tt S0 S1 Sdiff

10 .57092317 .60552487 .03460171
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Averaging over the untreated
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Averaging over the treated

. standsurv if hormon==1, surv ci timevar(tt) frame(f4, replace) ///
> at1(hormon 0) at2(hormon 1) atvar(S0 S1) ///
> contrast(difference) contrastvar(Sdiff)
. frame f4: list tt S0 S1 Sdiff if tt == 10, noobs

tt S0 S1 Sdiff

10 .3791009 .4181979 .039097

• We are averaging over the covariate distribution of the treated. We would
expect that the model based and Kaplan-Meier curves for the treated should
be similar if the model is reasonable.

• We are forcing the covariate distribution of the untreated to be more severe
than observed.

• We are estimating how much the survival would change if the treated were
untreated (under assumptions!).
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Averaging over the untreated
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Averaging within each group

. standsurv, surv ci timevar(tt) frame(f5, replace) ///
> over(hormon) atvar(S0 S1) ///
> contrast(difference) contrastvar(Sdiff)
. frame f5: list tt S0 S1 Sdiff if tt == 10, noobs

tt S0 S1 Sdiff

10 .57092317 .4181979 -.15272527

• We are averaging over the covariate distribution of each group separately.
We would expect that the model based and Kaplan-Meier curves for both
groups to be similar if the model is reasonable.

• We are not adjusting for confounding, each group has its own covariate
distribution and we know that the treated group were older and had more
severe disease.
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Averaging within each group 2

• Good for assessing model fit and/or understanding average survival in
subgroups, but this does not answer a causal question.

• Alternative syntax

. standsurv, surv ci timevar(tt) frame(f6, replace) ///
> at1(hormon 0, atif(hormon==0)) at2(hormon 1, atif(hormon==1)) ///
> atvar(S0 S1) ///
> contrast(difference) contrastvar(Sdiff)
. frame f6: list tt S0 S1 Sdiff if tt == 10, noobs

tt S0 S1 Sdiff

10 .57092317 .4181979 -.15272527
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Averaging within each group
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User defined functions in standsurv
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Used defined functions in standsurv

• When using standsurv we can give a number of at options.

• We use the contrast() option to perform contrasts of what is defined in
each at option.

contrast(difference) will take absolute differences
contrast(ratio) will take ratios.

• Sometimes we need to use a more complicated function than a difference or
a ratio.

• We can use the userfunction() option to do this.
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Example: Population attributable fraction

• The (population) attributable fraction is the proportion of preventable
outcomes if all subjects had not been exposed to a particular exposure. i.e.

AF =
P(D = 1)− P(D = 1|X = 0)

P(D = 1)

where where P(D = 1) is proportion diseased in the whole population, and
P(D = 1|X = 0) is the probability of being diseased in the unexposed.

• In observation studies there will be confounding and thus we need to
consider potential confounders, Z .

AF =
E (D = 1|Z )− E (D = 1|X = 0,Z )

E (D = 1|Z )
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Attributable fraction in survival studies

• In survival studies the probability of being diseased is a function of time, so
we define the AF using the failure function, F (t) = 1− S(t), so AF (t) is
defined as

AF (t) =
E [F (t|Z )]− E [F (t|X = 0,Z )]

E [F (t|Z )]
= 1− E [F (t|X = 0,Z )]

E [F (t|Z )]

E [F (t|Z )] is the standardized failure function over covariate distribution, Z
E [F (t|X = 0,Z )] is the standardized failure function over covariate
distribution, Z where all subjects are forced to be unexposed.

• See Samualson (2008)[16] for some background.
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Rotterdam data

• We fit a model to the Rotterdam data.

• The exposure is not being treated with hormonal therapy.

. stpm3 i.hormon age enodes pr_1, scale(lncumhazard) df(4) eform nolog
Number of obs = 2,982
Wald chi2(4) = 619.62

Log likelihood = -2668.4925 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
hormon

yes .7906432 .0715077 -2.60 0.009 .66221 .9439854
age 1.013244 .0024119 5.53 0.000 1.008528 1.017983

enodes .1132534 .0110135 -22.40 0.000 .0935998 .1370337
pr_1 .9064855 .0119282 -7.46 0.000 .8834055 .9301685

time
_ns1 -25.90082 1.871965 -13.84 0.000 -29.5698 -22.23184
_ns2 7.980587 1.003724 7.95 0.000 6.013324 9.947851
_ns3 -1.091126 .0461407 -23.65 0.000 -1.18156 -1.000691
_ns4 -.70103 .0504635 -13.89 0.000 -.7999366 -.6021234

_cons .801967 .161537 4.96 0.000 .4853603 1.118574

Note: Estimates are transformed only in the first equation.
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Using standsurv

• standsurv will calculate the ingredients for the AF.

. range tt 0 10 101
(2,881 missing values generated)
. standsurv, failure timevar(tt) ci frame(AF1, replace) ///
> at1(hormon 0) at2(hormon 1) at3(.) ///
> atvar(F_hormon0 F_hormon1 F_all)

• We can plug in the relevant standardized estimates to calculate the AF.

. frame AF1: gen AF_tmp = 1 - F_hormon1/F_all
(1 missing value generated)
. frame AF1: list tt F_hormon1 F_all AF_tmp if inlist(tt,1,5,10), noobs

tt F_hormon1 F_all AF_tmp

1 .01685169 .02035349 .17204904
5 .22362896 .26167585 .14539701

10 .39250923 .44808119 .12402208

• Unfortunately, this will not give us a confidence interval.
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Write a Mata function

• We write a short Mata function to calculate the AF.

. mata:
mata (type end to exit)

: function calcAF(at) {
> // at2 is F(t|unexposed,Z)
> // at1 is F(t,Z)
> return(1 - at[2]/at[1])
> }
: end

• The function receives the argument at.

• The at options in standsurv need to be specified in the same order as used
in the Mata function.

. standsurv, failure timevar(tt) ci frame(AF2, replace) ///
> at1(.) at2(hormon 1) ///
> userfunction(calcAF) userfunctionvar(AF)

• Note the use of the userfunction() option.
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Plot the attributable fraction
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Flexible parametric surival models: other scales

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 187



∗Models on other scales

• Proportionality on one scale will generally leads to non-proportionality on
another scale.

• stpm3 can fit models on other scales. These are

The log cumulative odds: use scale(lnodds).
The probit scale: use scale(probit).

• May get more parsimonious model on alternative scales, which may have
advantages in smaller datasets.

• We hardly ever use these other scales (apart from scale(lnhazard))
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∗Proportional Odds

• Proportional odds models described by Bennett as extension of logistic
regression to censored data [17].

• For two groups OR could be a function of time

OR(t) =
F1(t)

1− F1(t)
/

F2(t)

1− F2(t)

F1(t)

1− F1(t)
=

F2(t)

1− F2(t)
OR(t)

• If OR(t) is constant then this is a proportional odds model

• The log-logistic model can be expressed as a PO model.
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∗Other models

proportional hazards

log(− log (S(t|xi))) = s (ln(t)|γ, k0) + xiβ

• With 1 df (linear in ln t) equivalent to Weibull model

proportional odds

logit (1− S(t|xi)) = s (ln(t)|γ, k0) + xiβ

• With 1 df (linear in ln t) equivalent to log-logistic model

probit model

−Φ−1 (S(ln t|xi)) = s (ln(t)|γ, k0) + xiβ

• With 1 df (linear in ln t) equivalent to log-normal model
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Flexible parametric models: log hazard scale
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Modelling on the log hazard scale

• We have also worked on using splines on the log hazard scale (rather than
the log cumulative hazard scale) [18, 19, 20].

• stpm3 has the option scale(lnhazard) or scale(loghazard) to fit these
models.

• Why model on the log hazard scale?

More natural scale when modelling multiple time scales.
More natural scale when modelling SMRs/SIRs.
Some interpretation issues for cumulative hazard models when having
multiple time-dependent effects and wanting to quantify using hazard ratios.
May be more sensible when extrapolating in relative survival/excess
mortality models.

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 192



Modelling on the log hazard scale

• The model is

ln [hi(t)] = s (ln(t)|γ, k0) + xiβ

• We have changed from Hi(t) to hi(t).

• The splines now directly model the log baseline hazard function.

• Extension to time-dependent effects is the same, i.e. include interactions
between covariates and a spline function.
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Estimation

• The contribution of the i th subject to the the Log-likelhood is,

ln Li = di ln [h(ti)]−
∫ ti

t0i

h(u)du

• Need to integrate the hazard function in order to estimate the parameters.

• However, it is not possible to derive these integrals analytically. We
therefore, use numerical integration using Gaussian quadrature.

• Estimation slower, but allows a wider range of models to be fitted.

• See papers [18, 19, 20] for more details.
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NW England Breast Cancer Example

. stpm3 i.dep, scale(lnhazard) df(5) eform nolog
Number of obs = 24,883
Wald chi2(4) = 63.42

Log likelihood = -22496.272 Prob > chi2 = 0.0000

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep
2 1.049003 .0354095 1.42 0.156 .9818471 1.120751
3 1.10526 .0383094 2.89 0.004 1.032668 1.182954
4 1.213058 .0437561 5.35 0.000 1.130259 1.301923

mostdep 1.30988 .051347 6.89 0.000 1.21301 1.414485

time
_ns1 1.291467 .5156812 2.50 0.012 .2807504 2.302184
_ns2 -1.691936 .3192245 -5.30 0.000 -2.317605 -1.066268
_ns3 .6101762 .0637901 9.57 0.000 .4851499 .7352025
_ns4 .3895094 .0599444 6.50 0.000 .2720205 .5069982
_ns5 .343812 .1204279 2.85 0.004 .1077777 .5798463

_cons -3.02479 .0552183 -54.78 0.000 -3.133016 -2.916564

Note: Estimates are transformed only in the first equation.
Quadrature method: tanh-sinh with 30 nodes.
Analytical integration before first and after last knot.
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NW England Breast Cancer Example

• The syntax for predict is identical to when using scale(lncumhazard)

(or any other scale).

. predict Slnh*, surv ci frame(surv, replace) ///
> timevar(0 5, step(0.1)) ///
> at1(dep 1) at2(dep 2) at3(dep 3) ///
> at4(dep 4) at5(dep 5)
Predictions are stored in frame - surv

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 196



Comparison of survival functions
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Comparison of hazard functions
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Comments on models on log hazard scale

• The lnhazard (or loghazard) option did not exist in stpm2, so is a new
addition to stpm3.

• You could fit log hazard spline models using strcs.

• Also implemented for relative survival models.

• You should be able to repeat exercises for models on the log hazard scale if
you are interested.

• We are starting to use models on the log hazard scale more for work on
extrapolation of survival functions.

• If you are interested in trying these models just change the scale() option
in stpm3.
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Model convergence issues
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Model convergence issues

• You may have seen one of the following error messages.

initial values not feasible
r(1400);

Iteration 4: Log likelihood = -20517.528 (backed up)
Iteration 5: Log likelihood = -20517.407 (backed up)
iteration 6: Log likelihood = -20517.347 (backed up)
. . .

Iteration 9: log likelihood = -22921.452
Hessian is not negative semidefinite
r(430);

• I will discuss some reasons why you may get convergence problems.
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Initial values

• stpm3 used maximum likelihood to obtain the parameter estimates and their
variances.

• This requires reasonable starting values.

• These are obtained by fitting a Cox (or other) model and then using least
squares.

• The code on the following page is a simplified version of how starting values
are obtained.
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Obtaining initial values (simplified)

use breast NW if inlist(dep,1,5)
stset survtime, failure(dead==1)
// we want to fit a model with age and i.dep included in the model
// we will use 3 df
gen lnt = ln( t)
gensplines lnt, type(ns) df(3) gen( ns) subcentile(_d==1)
// start by fitting a Cox model
stcox agediag i.dep
// obtain the linear predictor
predict xb, xb
// obtain the baseline cumulative hazard
predict CH, basechazard
// obtain the cumulative hazard at t for each subject
replace CH = CH*exp(xb)
// calculate log cumulative hazard
gen logCH = ln(CH)
// initial values obtained using least squares for those with an event
regress logCH agediag i.dep ns1 ns2 ns3 if d
matrix initb = e(b)
matrix list initb
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Using alternative models for the initial values

• The initial values not feasible error means that the log-likelihood can not be
evaluated.

• One reason (more common in relative survival models) is that one or more
of the hazard functions evaluted at the event times is negative.

• For scale(logcumhazard) models the (log) cumulative hazard should be
monotonically increasing, i.e. have no turning points.

• The splines are not constrained to be monotonic, but usually this is not a
problem as there is never observed negative hazards.

• We can try using a different model other than a Cox model to obtain
starting values - use the initmodel(model) option. You can use cox, exp,
weibull or stpm2. I find exp is usually a good option.

• If you use the option initvaluesloop then stpm3 will loop over these
different models to try different initial values.

• However, none of the initial values models may give usable initial values.
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Use a simpler model for starting values

• You can try fitting a simpler model and using this for initial values of the
parameters.

• Fit a simpler model, store the parameters and then pass these to stpm3

using the from() option.

stpm3 @ns(agediag,df(3)), scale(lncumhazard) df(5)
matrix initb = e(b)

stpm3 @ns(agediag,df(3)), scale(lncumhazard) df(5) from(initb) ///
tvc(@ns(agediag,df(3))) dftvc(3)
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Backed up error

• Nearly always means there is a problem with your model and changing initial
values will not cure the problem.

• Things to think about

Do you have risk groups with only a small number (or zero) events. Use sts
graph, by(varname) risktable.
Have you have a few individuals with very long follow-up time? Are you
interested in long term follow-up. If not restrict the follow-up time, e.g.
stset ... , ......exit(time 10).
If you have a small dataset (actually a small number of events) then you
should not be fitting a complex model.
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Time-dependent effects

• This is where the problems usually occur.

• Consider modelling age with a time-dependent effect, you are allowing a
very flexible function that changes over follow-up time.

• However, we need data to estimate things. Think how many 85 year olds
will still be alive 10 years after diagnosis.

• Try restricting the follow-up.

• We have used winsorizing a lot that can help when it is the extreme ages
causing problems.
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Winsorizing

• Winsorizing sets observations lower or higher than specifed percentiles to the
values of the percentiles, whilst leaving all other observations unchanged.

• We have used this (mainly in relative survival models) to stabalize model
predictions at the extremes of a continous distribution.

. centile agediag, c(2 98)

Binom. interp.
Variable Obs Percentile Centile [95% conf. interval]

agediag 14,823 2 34.287 33.71434 34.86864
98 89.28256 88.85043 89.75771

• A wisorized variable would replace all values less than 34.287 to 34.287 and
all values greater than 89.282 to 89.282

• We can use the winsor() suboptions when using an extended varlist in
stpm3.
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Winsorizing: Standard model

. // model without winsorizing

. stpm3 @ns(agediag,df(3)), scale(lncumhazard) df(5) neq(1) nolog

Number of obs = 14,823
Wald chi2(3) = 2214.54

Log likelihood = -18712.099 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
_ns_f1_agediag1 -7.150054 .4829609 -14.80 0.000 -8.09664 -6.203468
_ns_f1_agediag2 -.7180313 .242339 -2.96 0.003 -1.193007 -.2430555
_ns_f1_agediag3 -3.075457 .1473045 -20.88 0.000 -3.364169 -2.786746

Extended functions
(1) @ns(agediag, df(3))

. estimates store standard
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Winsorizing: Winsorized model

. // model with winsorizing

. stpm3 @ns(agediag,df(3) winsor(2 98)), scale(lncumhazard) df(5) neq(1) nolog

Number of obs = 14,823
Wald chi2(3) = 2170.15

Log likelihood = -18716.11 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
_ns_f1_agediag1 -5.576178 .2167664 -25.72 0.000 -6.001032 -5.151324
_ns_f1_agediag2 -.0392185 .1279677 -0.31 0.759 -.2900306 .2115937
_ns_f1_agediag3 -2.146475 .091622 -23.43 0.000 -2.326051 -1.966899

Extended functions
(1) @ns(agediag, df(3) winsor(2 98))

. estimates store winsorized

• 96% of the age variable is unchanged.
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Winsorizing: predict hazard ratios

. frame create agehr

. frame agehr {

. range agediag 18 99 82
Number of observations (_N) was 0, now 82.
.
. gen t1 = 1
. estimates restore standard
(results standard are active now)
. predict , hazard ci merge timevar(t1) nogen ///
> at1(agediag 60) at2(.) ///
> contrast(ratio) contrastvar(hr_standard)
.
. estimates restore winsorized
(results winsorized are active now)
. predict , hazard ci merge timevar(t1) nogen ///
> at1(agediag 60) at2(.) ///
> contrast(ratio) contrastvar(hr_winsor)
. }

• Note that the code for the prediction is identical when we have winsorizing!
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Winsorizing: compare hazard ratios
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What to present?
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What to report?

• We have seen many ways to present survival data

(Conditional) hazard ratios (proportional and time-dependent)
Survival for selected covariates patterns.
Marginal survival and differences.
Survival as a function of age (or other covariates)
Marginal restricted mean survival time (and differnces)

• There are things I have not presented

Marginal hazards ratios
Median survival (or other percentiles).
Attributable fractions / avoidable deaths.

• The answer, as always, is “it depends”, but I would like to hear your views of
what you like/don’t like of the many different ways to present survival data.
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Some extensions
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Some Extensions

• Today I presented an overview of some standard flexible parametric survival
models.

• There are lots of extensions and I will very briefly cover some of these.
Namely:

Competing risks
Relative survival models
Using constraints
Assessment of calibration
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Competing risks

• We are at risk of more than one event.

• For example, people diagnosed with cancer are at risk of dying from their
cancer, but also at risk of dying from other causes.

• A competing event is an event that prevent the occurrence of the event of
interest may be present.

Dying from a cardiovascular event means that the (potential) time-to-death
for cancer never observed.

• Flexible parametric survival models also useful for competing risks models
(and more general multistate models).

Predictions are based on estimates from > 1 model.
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Competing risks
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Use a separate model for each hazard function, hk(t)
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Cause-specific Cumulative Incidence Function (CIF)

Cause-specific Cumulative Incidence Function (CIF)

Fk(t) =

∫ t

0

S(u)hk(u)du

Probability of dying due to cause k

Partitioning all-cause probability of death

F (t) =
K∑

k=1

Fk(t)

• CIFs estimated using numerical integration - using ODEs.
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Different causes

. table cause, statistic(frequency) statistic(percent)

Frequency Percent

cause
Censored 1,710 57.34
Cancer 996 33.40
Other causes 276 9.26
Total 2,982 100.00
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A model for each cause

Death due to breast cancer

. stset os, failure(cause=1) exit(time 120) scale(12)

. stpm3 @ns(age, df(5)) i.size i.grade pr 1, ///
scale(lnodds) df(3)

. estimates store cancer

Death due to other causes

. stset os, failure(cause=2) exit(time 120) scale(12)

. stpm3 @ns(age,df(3)), scale(lncumhazard) df(3)

. estimates store other

Store model estimates so can pass to predict command.
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Predictions

. // Conditional predictions

. predict cif50 cif60 cif70, cif crmodels(cancer other) ci ///
> timevar(0 10, step(0.1)) ///
> at1(age 50 size 1 grade 2 nodes 3 pr_1 0) ///
> at2(age 60 size 1 grade 2 nodes 3 pr_1 0) ///
> at3(age 70 size 1 grade 2 nodes 3 pr_1 0) ///
> frame(cifs, replace)
Predictions are stored in frame - cifs

.

. // Marginal predictions

. standsurv CIF_size1 CIF_size3, cif crmodels(cancer other) ci ///
> timevar(tt) ///
> at1(size 1) ///
> at2(size 3) ///
> contrast(difference) contrastvar(cifdiff) ///
> frame(cifstand, replace)

Paul Lambert Modelling using stpm3 Oslo, 9th September 2024 222



Competing Risks: Predictions
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Competing Risks: Prediction - Stacked Graphs
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Assess model fit with stpm3aj

. stpm3aj i.agegrp , crmodels(cancer other) compet1(2)
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Competing Risks Extensions

• Causal Inference and competing risks using standsurv [21].

• Competing risks and prognostic models [22].

• Parametric version of Fine and Gray model [23, 24].
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Competing causes

• Individuals diagnosed with a specific cancer are at risk for
dying from their cancer.
dying from other causes.

h(t|Zi) = ho(t|Zi) + hc(t|Zi)

• If we had reliable, accurate cause of death information we can estimate
hc(t|Zi). This is just a cause-specific analysis.

• However, lots of evidence that death certificates not well completed.
Accuracy varies ...

over time
between countries
between cancers
by age (particularly poor in the elderly)

So we estimate hc(t|Zi) without using cause of death information.
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Excess mortality/Relative survival

Incorporate expected mortality rates

All-cause mortality = expected mortality + excess mortality
h(t|Zi) = h∗(t|Zi) + λ(t|Zi)

• Need expected rates stratified by levels of Z , e.g. (age, sex, calendar year,
region, deprivation group, . . .).

• In a perfect world hc(t|Zi) = λ(t|Zi).
• The world is not perfect....

Transform to survival

S(t|Zi) = S∗(t|Zi)R(t|Zi)

R(t|Zi) =
S(t|Zi)

S∗(t|Zi)
hence ‘relative survival’
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Merging in expected mortality

• The expected mortality at the time of death is required.

• Make use of stset information to obtain attained age and calendar year.

. use breast_NW
(Ch28 Adult Breast 174, 175)
.
. stset dateexit, origin(datediag) failure(dead==1) ///
> exit(time datediag+5*365.24) id(ident) scale(365.24)

(output omitted )
.
. gen age = int(min(agediag + _t,99))
. gen year = year(datediag+ _t*365.24)
.
. //Merge in the expected rate
. merge m:1 sex dep year age using popmort_NW ///
> , keepusing(rate) keep(match)

Result Number of obs

Not matched 0
Matched 14,823 (_merge==3)
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Adding the bhazard() option

• If we add the bhazard(rate) option we fit a relative surival model. Then

predict, survival ... wil predict relatve survival
predict, hazard ... will predict excess hazard rates
Exactly the same in standsurv.

• Thus, all we have learnt about ‘standard’ models apply to relative survival
models.

. //Excess mortality model - Proportional excess hazards for agegroup
. stpm3 @ns(agediag, df(3))##i.dep, scale(lncumhazard) df(7) bhazard(rate) neq(0) ///
> tvc(@ns(agediag,df(3)) i.dep) dftvc(3) nolog

Number of obs = 14,823
Wald chi2(19) = 365.32

Log likelihood = -17280.981 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

Extended functions
(1) @ns(agediag, df(3))
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Some predictions just for relative survival models

S(t|Zi) = S∗(t|Zi)R(t|Zi)

• In relative survival models we can either predict relative survival or all cause
survival

• We all-cause survival measures (also crude probabilities and life expectancy)
we need to incorporate expected rates.

• This is done using the expsurv() option that merges in the expected rates.
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Predictions

• Predict relative survival.

. predict RS_a75_d1, survival at1(agediag 75 dep 1) ci ///
> timevar(0 10, step(0.1)) ///
> frame(rs_pred,replace)
Predictions are stored in frame - rs_pred

• Predict all cause survival

. predict AC_a75_d1, survival at1(agediag 75 dep 1) ci ///
> frame(rs_pred,merge) ///
> expsurv(using(popmort_NW) ///
> agediag(75) datediag(1990-1-1) ///
> pmage(age) pmrate(rate) pmyear(year) ///
> pmother(sex dep) at1(sex 2 dep 1) ///
> pmmaxyear(1995) pmmaxage(99))
Predictions are stored in frame - rs_pred
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We can then plot and compare
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Graph code in stpm3_relative_survival.do
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Lots more on relative survival

• Loss in life expectancy[25, 26]

• Causal Inference[27] and mediation analysis[28].

• Reference adjustment[29, 30]

• A marginal model for relative survival[31]
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Using constraints

• Most Stata estimaton commands allow incorporation of constraints on
parameters and stpm3 is no exception.

• In stpm2 there was a cure option which enabled cure models to be fitted.
This applied constraints on some parameters.

• I have not implemented cure models in stpm3, partly because I am far less
keen on them than I used to be.

• I will use constraints in two examples

1 Constraining the excess hazard to be zero after the last knot and therefore
fitting a cure model.

2 Constraining a time-dependent hazard ratio to be constant, i.e. proportional,
after a specified time.
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Cure models

• Recall that in a relative survival model the excess hazard is made up two
components, the expected mortality rate, h∗(t) and the excess mortality
rate, λ(t).

h(t|X ,Z ) = h∗(t|X ,Z ) + λ(t|X ,Z )

• If at some timepoint the excess mortality rate, λ(t) is at, and remains at
zero, we have statistical cure.

• This means that those still at risk are dying as the same rate as would be
expected in the general population.

• One of the nice things about natural splines is that the final spline variable is
the gradient of the linear effect after the last knot.

• In a flexible parametric cure model the gradient of the log cumualtive excess
hazard is zero after the last knots, the survival function will stabalize to
platea. In other words the excess hazard is zero[32].
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NW England Breast Cancer Example

• Only look at those aged 75+

• Load data and plot non-parametrcic Pohar Perme estimate.

. use breast_nw if agegrp==5
(Ch28 Adult Breast 174, 175)
. stset survtime, f(dead=1) id(ident)

(output omitted )
.
. stpp R_pp using "https://pclambert.net/data/popmort_NW.dta", ///
> agediag(agediag) datediag(datediag) ///
> pmage(age) pmyear(year) ///
> pmother(sex dep) graphname(R_pp2, replace)

• If cure is a reasonable assumption, then we should see the relative survival
curve plateau.
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Pohar Perme estimate of relative survival
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• Cure seems a resonable assumption here.
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Fit initial model (not assuming cure)

• Only modelling age here.

. stpm3 @ns(agediag, df(3)), scale(lncumhazard) df(5) ///
> bhazard(rate) nolog

Number of obs = 3,323
Wald chi2(3) = 106.14

Log likelihood = -4684.9507 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
_ns_f1_agediag1 -3.652952 .8636969 -4.23 0.000 -5.345767 -1.960137
_ns_f1_agediag2 .2453203 .2238792 1.10 0.273 -.193475 .6841155
_ns_f1_agediag3 -.421499 .5111492 -0.82 0.410 -1.423333 .5803351

time
_ns1 -15.92283 .544663 -29.23 0.000 -16.99035 -14.85531
_ns2 4.738218 .2797482 16.94 0.000 4.189921 5.286514
_ns3 -1.456713 .0726732 -20.04 0.000 -1.59915 -1.314277
_ns4 -.8845034 .0611872 -14.46 0.000 -1.004428 -.7645787
_ns5 -.488664 .0960268 -5.09 0.000 -.6768731 -.3004549

_cons .8267461 .2568451 3.22 0.001 .323339 1.330153

Extended functions
(1) @ns(agediag, df(3))
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Compare to Pohar Perme estimate of relative survival
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Graph code in constraints_cure_model.do

• Reasonable fit
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Adding an extra knot

• In our previous work on cure models we found that models fitted better if we
added an extra knot towards the end of follow-up.

• The default in stpm2 was to add a knot at the 95th percentile.

• We also found it sometime useful to place the upper boundary knot after
the end of follow-up.

• I will use the knots() option to specify internal knots at specific percentiles.

• You can control the location of boundary knots using the bknots() option
or specify all knots using the allknots() option.
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Fit model with additional knot (still not assuming cure)

. stpm3 @ns(agediag, df(3)), scale(lncumhazard) ///
> knots(20 40 60 80 95, percentile) bhazard(rate) nolog

Number of obs = 3,323
Wald chi2(3) = 105.30

Log likelihood = -4682.6021 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
_ns_f1_agediag1 -3.675761 .8637086 -4.26 0.000 -5.368599 -1.982923
_ns_f1_agediag2 .2576028 .223777 1.15 0.250 -.1809921 .6961977
_ns_f1_agediag3 -.43859 .5111091 -0.86 0.391 -1.440345 .5631654

time
_ns1 -15.69225 .5561798 -28.21 0.000 -16.78235 -14.60216
_ns2 4.762887 .2806516 16.97 0.000 4.21282 5.312954
_ns3 -1.37851 .081273 -16.96 0.000 -1.537802 -1.219217
_ns4 -.7836407 .076685 -10.22 0.000 -.9339405 -.6333408
_ns5 -.4101389 .0684764 -5.99 0.000 -.5443502 -.2759276
_ns6 -.0743801 .1026938 -0.72 0.469 -.2756563 .126896

_cons .7455238 .2595853 2.87 0.004 .2367459 1.254302

Extended functions
(1) @ns(agediag, df(3))
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Compare to Pohar Perme estimate of relative survival
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Graph code in constraints_cure_model.do

• Model estimate has reduced gradient towards end of follow-up
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Add a constraint to fit a cure model

. constraint 1 _ns6==0
. stpm3 @ns(agediag, df(3)), scale(lncumhazard) knots(20 40 60 80 95, percentile) ///
> bhazard(rate) constraints(1) nolog

Number of obs = 3,323
Wald chi2(3) = 105.16

Log likelihood = -4682.8677 Prob > chi2 = 0.0000
( 1) [time]_ns6 = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
_ns_f1_agediag1 -3.676204 .8639616 -4.26 0.000 -5.369538 -1.982871
_ns_f1_agediag2 .258445 .2239541 1.15 0.248 -.1804969 .6973869
_ns_f1_agediag3 -.4389886 .5112358 -0.86 0.391 -1.440992 .5630151

time
_ns1 -15.56957 .5304502 -29.35 0.000 -16.60924 -14.52991
_ns2 4.766312 .2807062 16.98 0.000 4.216138 5.316486
_ns3 -1.337454 .0587382 -22.77 0.000 -1.452579 -1.222329
_ns4 -.7394701 .0469931 -15.74 0.000 -.8315749 -.6473653
_ns5 -.373215 .0459909 -8.11 0.000 -.4633556 -.2830744
_ns6 0 (omitted)

_cons .703227 .2530923 2.78 0.005 .2071753 1.199279

Extended functions
(1) @ns(agediag, df(3))
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Compare to Pohar Perme estimate of relative survival
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Graph code in constraints_cure_model.do

• We are now fitting a simple cure model!
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Predict cure

• The estimate cure proportion is just the predicted relative survival at or after
the last knot.

• We use predict or standsurv in the same way as any other model.

• The marginal cure proportion, i.e averaged over all individuals is....

. gen t10 = 10 in 1
(3,322 missing values generated)
. standsurv cure, surv timevar(t10) frame(cure, replace) ci at1(.)
. frame cure: list cure*, noobs

cure cure_lci cure_uci

.40480216 .37698911 .43466716
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Predict cure differece

• The difference in the cure proportion between 75 and 85 years olds is.

. predict cure75 cure85, surv timevar(t10) ci frame(cure2, replace) ///
> at1(agediag 75) at2(agediag 85) ///
> contrast(difference) contrastvar(curediff)
Predictions are stored in frame - cure2
. frame cure2: list cure75* cure85*, noobs

cure75 cure7~lci cure7~uci cure85 cure8~lci cure8~uci

.55255618 .47924827 .61976937 .31430022 .27348844 .35585248

. frame cure2: list curediff*, noobs abbrev(12)

curediff curediff_lci curediff_uci

-.23825596 -.31384277 -.16266915

• All this would be easier with specific options or a wrapper command.
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Constraining hazard ratios

• An advantage of FPSMs is the ability the model non-proportional hazards.

• Sometimes it may be useful to constrain a hazard ratio to be proportional
after a specific time.

• This has been discussed in the context of extrapolation in health
economics[33].

• We used constraints to impose ‘treatment waning’ on a hazard ratio
[Jennings under review].

• It may help with some non-convergence problems???

• The following few slides give the general idea how how to do this using
constraints.

• It is more natural to constrain hazard ratios on the log hazard scale.
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Breast NW data: Time-dependent effect for deprivation group.

. stpm3 i.dep, scale(lnhazard) df(5) tvc(i.dep) dftvc(3) nolog vsquish
Number of obs = 9,719
Wald chi2(1) = 0.06

Log likelihood = -10314.656 Prob > chi2 = 0.8072

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep .0400289 .1640139 0.24 0.807 -.2814324 .3614901

time
_ns1 2.996079 1.063506 2.82 0.005 .9116456 5.080513
_ns2 -1.856115 .5998345 -3.09 0.002 -3.031769 -.6804611
_ns3 1.30735 .145643 8.98 0.000 1.021895 1.592805
_ns4 .8237268 .1313701 6.27 0.000 .5662462 1.081207
_ns5 1.126959 .2571798 4.38 0.000 .6228955 1.631022

dep#c._ns_tvc1
mostdep 2.117289 1.509185 1.40 0.161 -.8406583 5.075236

dep#c._ns_tvc2
mostdep .0748991 .8512222 0.09 0.930 -1.593466 1.743264

dep#c._ns_tvc3
mostdep .0252986 .2991369 0.08 0.933 -.5609989 .6115961

_cons -3.643122 .1292035 -28.20 0.000 -3.896356 -3.389888

Quadrature method: tanh-sinh with 30 nodes.
Analytical integration before first and after last knot.
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Calculate hazard ratio

. predict , hazard timevar(0 10,n(101)) ci frame(f1, replace) nogen ///
> at1(dep 1) at2(dep 5) ///
> contrast(ratio) contrastvar(hr1)
Predictions are stored in frame - f1
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Thinking about constraints

• I will constrain the hazard ratio to be proportional from 5 years.

• The time-dependent effect for deprivation is due to includion of spline
variables calculated when using the tvc() and dftvc() options.

• I need to define the knots to be in the range (0,5) with the upper boundary
knots at 5.

• I do this before running stpm3

• Like the cure models I will add an extra knot at the 95 percentile of the
event times.

• Note that there are no constraints on the spline terms for the baseline.
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Calculating the knot positions

. summ _t, meanonly

. global mintime `r(min)´

. _pctile _t if _d & _t<=5, p(33.33 66.67 95 )

. global allknots ${mintime} `r(r1)´ `r(r2)´ `r(r3)´ `r(r4)´ 5

. di "${allknots}"

.003000000026077 1.560999989509583 2.913000106811523 4.651999950408936 5
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Fit model with user defined kinots and constraint
. constraint 1 5.dep#c._ns_tvc4 = 0
. stpm3 i.dep, scale(lnhazard) df(5) tvc(i.dep) allknotstvc(${allknots}) ///
> constraints(1) nolog vsquish

(output omitted )
( 1) [time]5.dep#c._ns_tvc4 = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep .0437316 .0621109 0.70 0.481 -.0780036 .1654668

time
_ns1 2.88449 1.079271 2.67 0.008 .7691566 4.999823
_ns2 -1.720327 .637552 -2.70 0.007 -2.969906 -.4707477
_ns3 1.299459 .1369801 9.49 0.000 1.030983 1.567935
_ns4 .8322954 .1170678 7.11 0.000 .6028467 1.061744
_ns5 1.157298 .2504617 4.62 0.000 .6664016 1.648193

dep#c._ns_tvc1
mostdep 2.380574 1.426375 1.67 0.095 -.4150694 5.176218

dep#c._ns_tvc2
mostdep -.2183354 .901481 -0.24 0.809 -1.985206 1.548535

dep#c._ns_tvc3
mostdep .1765361 .1176695 1.50 0.134 -.0540919 .4071641

dep#c._ns_tvc4
mostdep 0 (omitted)

_cons -3.651555 .1204318 -30.32 0.000 -3.887597 -3.415513

Quadrature method: tanh-sinh with 30 nodes.
Analytical integration before first and after last knot.
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Compare constrained and unconstrained hazard ratio
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Graph code in constraints_hazard_ratio.do
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Some thoughts on constraints

• I did the two examples using constraints last week.

• I like the idea of constraining hazard ratios.

• Time-dependence is most common early after diagnosis, but we put effort
into modelling non-proportional hazards throughout the time-scale.

• Could be very useful for extrapolation.

• Need to think about sensitivity to knot positions. Is the 95th percentile
sensible for the additional knot?
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Calibration

• A prognostic model is a regression model intended to enable prediction of
future outcomes given values of several covariates measures at or before the
time origin.

• Used to make health care decisions, e.g. treatment, timings of follow-up etc.

• We are interested in both callibration and discrimination of the model.

• A common way to assess calibration is a calibration plot.

Calibration the agreement between observed and predicted probabilities.

Discrimination the ability of the prognostic model to distinguish between
patients at different levels of risk
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Calibration plots

• A visual tool to assess agreement between predicted and observed
probabilities.

• With survival data (due to censoring) often define groups based on predicted
probabilities and compare marginal predictions with non-parametric
estimates.

• More recently use pseudo observations to enable visualization over the
complete range of predictions[34].

• Useful to add other summaries of model performance to plot.

• stpm3calplot does some of this work for you.

• It will be added in a future release, soon(ish).
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Rotterdam data

. stpm3 age @fn(exp(-0.12 * nodes),stub(enodes)) i.size i.hormon i.grade pr_1, ///
> scale(lnodds) df(4) neq(1) nolog

Number of obs = 2,982
Wald chi2(7) = 604.36

Log likelihood = -2607.772 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
age .0148001 .0029896 4.95 0.000 .0089405 .0206596

_fn_enodes -2.664496 .1550357 -17.19 0.000 -2.96836 -2.360631

size
>20-50mmm .4698654 .0854911 5.50 0.000 .3023059 .6374249

>50 mm .8191977 .1311011 6.25 0.000 .5622443 1.076151

hormon
yes -.4521206 .1220432 -3.70 0.000 -.6913209 -.2129203

3.grade .3962003 .0933199 4.25 0.000 .2132966 .579104
pr_1 -.138221 .0176075 -7.85 0.000 -.172731 -.103711

(1) @fn(exp(-0.12 * nodes), stub(enodes))
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Calibration: stpm3km with failure option

. stpm3km, failure
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Calibration: stpm3km with lots of groups

. stpm3km, groups(15) legend(off)
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Calibration: stpm3calplot at 5 years

. stpm3calplot, time(5)
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Calibration: stpm3calplot with Observed CIs

. stpm3calplot, time(5) ciobs

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d

0.0 0.2 0.4 0.6 0.8 1.0
Predicted

Graph code in stpm3calplot.do
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Calibration: stpm3calplot with Expected CIs

. stpm3calplot, time(5) cipred
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Calibration: stpm3calplot with pseudo observations smoother

. stpm3calplot, time(5) ciobs pseudo
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Calibration:stpm3calplot with pseudo observations smoother

. stpm3calplot, time(5) pseudo smoother(ns) smootherci
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Calibration: stpm3calplot with performance statistics

. stpm3calplot, time(5) ciobs pseudo smoother(glm) smootherci ///
stats(brier calint calslope)

Brier Score: 0.1591
Calibration Intercept: -0.0182

Calibration Slope: 0.9467
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Final thoughts
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Final thoughts and wrap-up

• We have found these models very useful in a range of areas from simple
descriptive models, to prognostic models and causal models.

• The Cox model is a great approach, but I think in most cases the
advantages of using of these flexible models outweighs the disadvantages.

• I hope I have convinced you of this (if you were not convinced already).

• I think the most powerful part of stpm3 is the predictions, both conditional
and marginal. I can fit a complex Cox model with non-linear effects , relax
the proportional hazards assumption etc, but then it is much, much harder
to obtain predictions, obtain marginal estimates etc etc.
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stpm3

• Let me know if you find any bugs in stpm3.

• If you have a question, it is far easier for me if you create a small working
example that demonstrates the problem (you are much more likely to get a
response).

• Some things that may or may not come in the future.
stpm3calplot will be released when it is tidied up.
In standsurv you should be able to specify timevar(0 10, step(0.1))

rather than create the variable yourself.
tvcoffset() option: would allow multiple time-scales for
scale(lnhazard) models.
Anything that improves convergence or gives you explanation of what the
problem is.
Think of useful syntax for introducing constraints.

• Please add suggestions of your own.
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Last slide!

• Any final questions?.
• Thank you attending!
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