Change of scale option

The scale option has changed

In stpm2 the choice of options when using the scale() option included hazard and odds. These really meant log cumulative hazard and log odds respectively.

In stpm3 you need to refer to these models as scale(lncumhazard) or scale(lnodds). This is because stpm3 allows models to be fitted on the log hazard scale (scale(lnhazard)) and thus there is a need to distinguish between models on the log cumulative hazard and log hazard scales.

We first load the example Rotterdam 2 breast cancer data and then use stset to declare the survival time and event indicator.

. use https://www.pclambert.net/data/rott2b, clear
(Rotterdam breast cancer data (augmented with cause of death))

. stset os, f(osi==1) scale(12) exit(time 120)

Survival-time data settings

         Failure event: osi==1
Observed time interval: (0, os]
     Exit on or before: time 120
     Time for analysis: time/12

--------------------------------------------------------------------------
      2,982  total observations
          0  exclusions
--------------------------------------------------------------------------
      2,982  observations remaining, representing
      1,171  failures in single-record/single-failure data
 20,002.424  total analysis time at risk and under observation
                                                At risk from t =         0
                                     Earliest observed entry t =         0
                                          Last observed exit t =        10

The scale(12) option converts the times recorded in months to years.

To fit an stpm2 model we would use,

. stpm2 hormon, scale(hazard) df(5) 

Iteration 0:   log likelihood = -2929.2995  
Iteration 1:   log likelihood = -2928.2998  
Iteration 2:   log likelihood = -2928.2966  
Iteration 3:   log likelihood = -2928.2966  

Log likelihood = -2928.2966                              Number of obs = 2,982

------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
xb           |
      hormon |   .4321954   .0861189     5.02   0.000     .2634054    .6009854
       _rcs1 |    .914158   .0273548    33.42   0.000     .8605436    .9677725
       _rcs2 |   .1672938   .0273886     6.11   0.000     .1136131    .2209746
       _rcs3 |   .0360402   .0154393     2.33   0.020     .0057797    .0663006
       _rcs4 |  -.0113638    .007644    -1.49   0.137    -.0263459    .0036182
       _rcs5 |   .0058281   .0049328     1.18   0.237    -.0038401    .0154963
       _cons |  -1.225443   .0332548   -36.85   0.000    -1.290622   -1.160265
------------------------------------------------------------------------------

The equivalent model in stpm3 is,

. stpm3 hormon, scale(lncumhazard) df(5) 

Iteration 0:   log likelihood = -2929.2941  
Iteration 1:   log likelihood = -2928.2998  
Iteration 2:   log likelihood = -2928.2966  
Iteration 3:   log likelihood = -2928.2966  

                                                        Number of obs =  2,982
                                                        Wald chi2(1)  =  25.19
Log likelihood = -2928.2966                             Prob > chi2   = 0.0000

------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
xb           |
      hormon |   .4321954   .0861189     5.02   0.000     .2634054    .6009854
-------------+----------------------------------------------------------------
time         |
        _ns1 |   -23.9834    1.92113   -12.48   0.000    -27.74874   -20.21805
        _ns2 |   6.695765   1.027919     6.51   0.000     4.681082    8.710449
        _ns3 |  -1.214676   .0497438   -24.42   0.000    -1.312172    -1.11718
        _ns4 |  -.8095755   .0387379   -20.90   0.000    -.8855004   -.7336505
        _ns5 |  -.4994385   .0418591   -11.93   0.000    -.5814808   -.4173963
       _cons |  -.5713643   .0332128   -17.20   0.000    -.6364603   -.5062684
------------------------------------------------------------------------------
Warning: This is a test version of stpm3

Note the log-likelihoods are identical as are the coefficients/standard errors for hormon. Note that different basis functions are used, so the coefficients for the spline terms are different. However, predicted values for the same covariate pattern will not differ.

To fit a model on the log hazard scale use scale(lnhazard),

. stpm3 hormon, scale(lnhazard) df(5) 

Iteration 0:   log likelihood = -14911.675  
Iteration 1:   log likelihood = -3026.8801  
Iteration 2:   log likelihood = -2948.3778  
Iteration 3:   log likelihood =  -2932.594  
Iteration 4:   log likelihood = -2930.2148  
Iteration 5:   log likelihood = -2930.1543  
Iteration 6:   log likelihood = -2930.1543  

                                                        Number of obs =  2,982
                                                        Wald chi2(1)  =  25.25
Log likelihood = -2930.1543                             Prob > chi2   = 0.0000

------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
xb           |
      hormon |   .4327572   .0861241     5.02   0.000      .263957    .6015574
-------------+----------------------------------------------------------------
time         |
        _ns1 |  -8.932832   1.582843    -5.64   0.000    -12.03515   -5.830516
        _ns2 |   4.310232   .9613182     4.48   0.000     2.426083    6.194381
        _ns3 |   .3888339   .1855177     2.10   0.036     .0252258    .7524419
        _ns4 |   .1035977   .1619785     0.64   0.522    -.2138744    .4210698
        _ns5 |   .0857984   .3383806     0.25   0.800    -.5774153    .7490121
       _cons |  -2.911815    .146526   -19.87   0.000       -3.199   -2.624629
------------------------------------------------------------------------------
Quadrature method: Gauss-Legendre with 30 nodes
Warning: This is a test version of stpm3

Biostatistician